4.7 Article

Effect of temperature gradient on composition and morphology of synthetic chlorine-containing biomass boiler deposits

期刊

FUEL PROCESSING TECHNOLOGY
卷 141, 期 -, 页码 285-298

出版社

ELSEVIER
DOI: 10.1016/j.fuproc.2015.10.011

关键词

Temperature gradient; Superheater deposit; Molten salt; Alkali chloride; Computational fluid dynamics

资金

  1. Academy of Finland [266384]
  2. National Technology Agency of Finland (Tekes)
  3. Andritz Oy
  4. Metso (Valmet) Power Oy
  5. Foster Wheeler Energia Oy
  6. UPM-Kymmene Oyj
  7. Clyde Bergemann GmbH
  8. International Paper Inc.
  9. Top Analytica Oy Ab (Tekes) [235/11]
  10. Academy of Finland (AKA) [266384, 266384] Funding Source: Academy of Finland (AKA)

向作者/读者索取更多资源

A novel laboratory method has been developed to study the chemical and physical behavior of ash deposits in a temperature gradient. Experiments with synthetic alkali salt mixtures similar to biomass boiler deposits show that alkali chlorides evaporate from hotter particles in the deposit and condense on colder particles closer to the cooled metal surface or even condense on the metal surface. Formation of a partially or completely molten layer in the outer hotter region closer to the flue gas is also observed in the experiments. The effect of time is shown to be significant for the enrichment of chlorides as longer experiment time leads to higher amounts of vaporization, transport and condensation within the deposits. These effects are quantitatively verified using Computational Fluid Dynamics modeling. The transport of alkali chloride vapors becomes negligible if the deposit and metal temperature is cold enough. An enrichment of alkali chlorides towards the cooled metal surface occurs and can increase chlorine-induced corrosion of superheaters as the deposits mature over time. The experimental observations are similar to superheater deposit morphologies observed in biomass boilers, such as straw-fired grate boilers. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据