4.7 Article

A chromosome-anchored genome assembly for Lake Trout (Salvelinus namaycush)

期刊

MOLECULAR ECOLOGY RESOURCES
卷 22, 期 2, 页码 679-694

出版社

WILEY
DOI: 10.1111/1755-0998.13483

关键词

genome assembly; genomics; Lake Trout; salmonid; Salvelinus

资金

  1. Department of Fisheries and Wildlife at Michigan State University
  2. Michigan Department of Natural Resources
  3. Canada Research Chair Program
  4. Great Lakes Fishery Commission [2017_BER_44071, 2017_SCR_44067]
  5. Canada Foundation for Innovation [33408]
  6. CanSeq150 Sequencing Initiative
  7. Genome Canada

向作者/读者索取更多资源

In this study, an annotated, chromosome-anchored genome assembly for Lake Trout was generated using various sequencing techniques, resulting in a highly contiguous assembly. Analysis revealed insights into homeologs resulting from a salmonid-specific autotetraploid event and homologous chromosomes in related taxa, providing valuable resources for future genomic research.
Here, we present an annotated, chromosome-anchored, genome assembly for Lake Trout (Salvelinus namaycush) - a highly diverse salmonid species of notable conservation concern and an excellent model for research on adaptation and speciation. We leveraged Pacific Biosciences long-read sequencing, paired-end Illumina sequencing, proximity ligation (Hi-C) sequencing, and a previously published linkage map to produce a highly contiguous assembly composed of 7378 contigs (contig N50 = 1.8 Mb) assigned to 4120 scaffolds (scaffold N50 = 44.975 Mb). Long read sequencing data were generated using DNA from a female double haploid individual. 84.7% of the genome was assigned to 42 chromosome-sized scaffolds and 93.2% of Benchmarking Universal Single Copy Orthologues were recovered, putting this assembly on par with the best currently available salmonid genomes. Estimates of genome size based on k-mer frequency analysis were highly similar to the total size of the finished genome, suggesting that the entirety of the genome was recovered. A mitochondrial genome assembly was also produced. Self-versus-self synteny analysis allowed us to identify homeologs resulting from the salmonid specific autotetraploid event (Ss4R) as well as regions exhibiting delayed rediploidization. Alignment with three other salmonid genomes and the Northern Pike (Esox lucius) genome also allowed us to identify homologous chromosomes in related taxa. We also generated multiple resources useful for future genomic research on Lake Trout, including a repeat library and a sex-averaged recombination map. A novel RNA sequencing data set for liver tissue was also generated in order to produce a publicly available set of annotations for 49,668 genes and pseudogenes. Potential applications of these resources to population genetics and the conservation of native populations are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据