4.4 Article

The impact of heterogeneous microstructural features on crystal plasticity modeling of plastic anisotropy

出版社

IOP Publishing Ltd
DOI: 10.1088/1361-651X/ac1ce9

关键词

crystal plasticity; plastic anisotropy; dislocation density; texture

资金

  1. U.S. Department of Energy's National Nuclear Security Administration [DE-NA0003525]

向作者/读者索取更多资源

Crystal plasticity finite element models typically assume uniform dislocation distribution within grains, but this study found that considering the initial nonuniformity of dislocations led to more accurate predictions in simulations comparing to experiments.
Crystal plasticity finite element models typically assume each grain starts with a spatially uniform dislocation distribution, meaning each grain is initialized with a single lattice orientation and all grains share the same slip resistance. This study assessed that assumption by comparing crystal plasticity simulations of tensile tests against experiments on an extruded aluminum 7079 alloy. The simulations utilized computational microstructures with 'pancaked' grains and a significant degree of crystallographic texture, consistent with experimental measurements. In one case, the computational microstructures were assigned a single slip resistance and a single lattice orientation for each grain prior to the tension tests. In another case, the extrusion process prior to the tension tests was simulated to cause nonuniform slip resistances, nonuniform crystal orientations within each grain, and nonuniform slip resistances at each material point. Both approaches produced reasonably accurate predictions of the measured yield stress and lateral strain ratio anisotropy, but the predictions considering the initial nonuniformity exhibited less prediction error. Other factors, such as latent vs self hardening of slip systems and fine vs coarse grains, did not have as large an impact. These results suggest that dislocation heterogeneity should be experimentally characterized and fed into future crystal plasticity simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据