4.7 Article

Identification of hydrophobin genes and their physiological functions related to growth and development in Pleurotus ostreatus

期刊

MICROBIOLOGICAL RESEARCH
卷 247, 期 -, 页码 -

出版社

ELSEVIER GMBH
DOI: 10.1016/j.micres.2021.126723

关键词

Pleurotus ostreatus; Hydrophobins; Bioinformatics analysis; Expression profile; RNA interference; Gene function

资金

  1. National Natural Science Foundation of China (NSFC) [30771502, 31172011]

向作者/读者索取更多资源

Pleurotus ostreatus hydrophobin genes constitute a large family with genetic diversity, and are expressed temporally and spatially to meet the developmental needs of mushrooms.
Hydrophobins are small secreted proteins with important physiological functions and potential applications. Here, Pleurotus ostreatus hydrophobin genes were systematically analyzed: they were characterized, classified, and their expression profiles and gene functions were explored. In total, 40 P. ostreatus hydrophobin genes were found and showed genetic diversity, of which 15 were newly identified. The hydrophobin protein sequences were diverse but all contained eight cysteine residues with a conserved spacing pattern, and 33 of them were class I hydrophobins. The expression profile analyses showed that Vmh3 and Hydph20 were abundant in monokaryotic and dikaryotic mycelia, whereas Hydph17, Po.hyd16, Hydph8 were specifically expressed in monokaryotic mycelia and Po.hyd10 were specific in dikaryotic mycelia. Furthermore, Vmh3, Hydph20, Po.hyd7, and Po.hyd10 were abundant when dikaryotic mycelia cultivated on PDA, which are different from on substrate (Vmh2, Vmh3, Hydph7, Po.hyd3, Po.hyd7, Po.hyd9); Hydph12, POH1, and Po.hyd4 can be induced by natural light and cold stimulation during development from mycelia to primordia; Vmh3, FBH1, Hydph12, Po.hyd1?Po.hyd5, and Po. hyd8 were highly expressed in primordia and young fruiting bodies; Hydph12, Po.hyd1, Po.hyd4, and Po.hyd5 were specifically expressed in pilei. In addition, RNAi transformants of FBH1 exhibited slower growth rates and had fewer primordia and fruiting bodies, which suggests FBH1 affects the growth rate and primordia formation of P. ostreatus. Therefore, P. ostreatus hydrophobin genes belong to a large family and are temporally and spatially expressed to meet the developmental needs of mushroom.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据