4.5 Article

Influences of non-IgE-mediated cow's milk protein allergy-associated gut microbial dysbiosis on regulatory T cell-mediated intestinal immune tolerance and homeostasis

期刊

MICROBIAL PATHOGENESIS
卷 158, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.micpath.2021.105020

关键词

Gut microbiota; Germ-free mice; Regulatory T cells; Immune tolerance; Immune homeostasis; Cow's milk protein allergy

向作者/读者索取更多资源

This study demonstrates the impact of microbial dysbiosis associated with non-IgE-mediated cow's milk-induced proctocolitis on intestinal Treg cells and immune homeostasis, leading to an overactivated Th2 biased immune response. Specific gut microbial phylotypes potentially responsible for this disruption have been identified.
Gut microbial dysbiosis is closely associated with cow's milk protein allergy (CMPA) during infancy. Recent research has highlighted the crucial role of the commensal microbiota-induced intestinal regulatory T (Treg) cell response in the development of oral tolerance and protection against IgE-mediated food allergies. However, the influences of CMPA (particularly non-IgE-mediated CMPA)-associated microbial dysbiosis on Treg cell-mediated intestinal immune tolerance and homeostasis remain poorly characterized. To investigate this issue, fecal microbiota from infant donors with food protein-induced allergic proctocolitis (FPIAP) associated with cow's milk, which is the most frequent clinical type of non-IgE-mediated gastrointestinal CMPA, and from age-matched healthy controls were transplanted into germ-free mice in this study. Two weeks post fecal microbiota transplantation, the gut microbiome of the recipient mice was analyzed by 16S rRNA gene sequencing, and the intestinal immunological alterations associated with the Treg cell compartment and intestinal immune homeostasis were detected. The specific gut microbial phylotypes that were potentially responsible for the disruption of intestinal immune homeostasis were also analyzed. We observed that the main characteristics of the gut micro biome in infant donors could be stably maintained in recipient mice. We also found that mice colonized with the gut microbiome from infants with cow's milk-induced FPIAP showed significant deficiencies in the accumulation and function of intestinal Treg cells. Furthermore, these mice showed disrupted intestinal immune homeostasis, which was characterized by an overactivated Th2 biased immune response. We further identified two potentially pathogenic genera that contribute to this disruption. Overall, our results highlight a destructive effect of non-IgEmediated CMPA-associated microbial dysbiosis on intestinal immune tolerance and homeostasis. We believe these findings will help improve our understanding of the gut microbiota-mediated pathogenesis of non-IgEmediated CMPA in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据