4.7 Article

Maximum burning rate and fixed carbon burnout efficiency of power coal blends predicted with back-propagation neural network models

期刊

FUEL
卷 172, 期 -, 页码 170-177

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2016.01.035

关键词

Back-propagation neural network; Power coal blends; Maximum burning rate; Fixed carbon burnout efficiency; Early stopping method

资金

  1. National Natural Science Foundation China [51176163, 51476141]
  2. National Basic Research Program China [2012CB214906]

向作者/读者索取更多资源

Back-propagation (BP) neural network models were developed to accurately predict the maximum burning rate and fixed carbon burnout efficiency of 16 typical Chinese coals and 48 of their blends. Early stopping method was used to prevent the BP neural network from over-fitting. The generalisation performance and prediction accuracy of the neural network thus became significantly improved. Pearson correlation analysis results showed that the maximum burning rate was most relevant to coal calorific value as well as carbon and ash content. Fixed carbon burnout efficiency was most relevant to coal volatile matter, fixed carbon and calorific value. Accordingly, three-layer BP neural network models with three input factors were developed to predict the combustion characteristics of power coal blends. The BP neural network used to predict the maximum burning rate gave a relative mean error of 1.97%, which was considerably lower than that given by the quadratic polynomial regression (7.06%). Moreover, the BP neural network used to predict the fixed carbon burnout efficiency gave a relative mean error of 0.91%, which was significantly lower than that given by the quadratic polynomial regression (4.03%). (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据