4.5 Article

Image-based cell subpopulation identification through automated cell tracking, principal component analysis, and partitioning around medoids clustering

期刊

MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
卷 59, 期 9, 页码 1851-1864

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11517-021-02418-7

关键词

Phenotype; Clustering; Cell tracking; Cell morphology; Cell motility

资金

  1. National Science Foundation [CMMI-1334611]
  2. IGERT fellowship under NSF-DGE [1068780]
  3. Ronald E. McNair Program
  4. Renee Crown University Honors Program
  5. Donofrio Scholars Program
  6. LSAMP program
  7. Division Of Graduate Education
  8. Direct For Education and Human Resources [1068780] Funding Source: National Science Foundation

向作者/读者索取更多资源

In this study, a computational, image analysis-based approach was introduced to accurately identify and characterize distinct functional cell phenotypic subpopulations. Using a heterogeneous model system of endothelial and smooth muscle cells, it was found that cells exhibited different motility rates in co-culture compared to monoculture. This non-destructive and non-invasive imaging method can be broadly applied to heterogeneous cell culture model systems to advance understanding of how heterogeneity affects cell phenotype.
In vitro cell culture model systems often employ monocultures, despite the fact that cells generally exist in a diverse, heterogeneous microenvironment in vivo. In response, heterogeneous cultures are increasingly being used to study how cell phenotypes interact. However, the ability to accurately identify and characterize distinct phenotypic subpopulations within heterogeneous systems remains a major challenge. Here, we present the use of a computational, image analysis-based approach-comprising automated contour-based cell tracking for feature identification, principal component analysis for feature reduction, and partitioning around medoids for subpopulation characterization-to non-destructively and non-invasively identify functionally distinct cell phenotypic subpopulations from live-cell microscopy image data. Using a heterogeneous model system of endothelial and smooth muscle cells, we demonstrate that this approach can be applied to both mono and co-culture nuclear morphometric and motility data to discern cell phenotypic subpopulations. Morphometric clustering identified minimal difference in mono- versus co-culture, while motility clustering revealed that a portion of endothelial cells and smooth muscle cells adopt increased motility rates in co-culture that are not observed in monoculture. We anticipate that this approach using non-destructive and non-invasive imaging can be applied broadly to heterogeneous cell culture model systems to advance understanding of how heterogeneity alters cell phenotype.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据