4.3 Article

Numerical Study of MHD Third-Grade Fluid Flow through an Inclined Channel with Ohmic Heating under Fuzzy Environment

期刊

MATHEMATICAL PROBLEMS IN ENGINEERING
卷 2021, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2021/9137479

关键词

-

向作者/读者索取更多资源

This article discusses the fuzzy problems in three basic flow problems with gravity and magnetic parameters in a third-grade fluid. By solving the fuzzy equations using numerical techniques, it is found that the fuzzy gravitational and magnetic parameters are less sensitive for flow and heat situations.
The uncertainties or fuzziness occurs due to insufficient knowledge, experimental error, operating conditions, and parameters that give the imprecise information. In this article, we discuss the combined effects of the gravitational and magnetic parameters for both crisp and fuzzy cases in the three basic flow problems (namely, Couette flow, Poiseuille flow, and Couette-Poiseuille flow) of a third-grade fluid over an inclined channel with heat transfer. The dimensionless governing equations with the boundary conditions are converted into coupled fuzzy differential equations (FDEs). The fuzzified forms of the governing equations along with the boundary conditions are solved by employing the numerical technique bvp4c built in MATLAB for both cases, which is very efficient and has a less computational cost. In the first case, proposed problems are analyzed in a crisp environment, while in the second case, they are discussed in a fuzzy environment with the help of alpha-cut approach, which controls the fuzzy uncertainty. It is observed that the fuzzy gravitational and magnetic parameters are less sensitive for a better flow and heat situation. Using triangular fuzzy numbers (TFNs), the left, right, and mid values of the velocity and temperature profile are presented due to various values of the involved parameters in tabular form. For validation, the present results are compared with existing results for some special cases, viz., crisp case, and they are found to be in good agreement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据