4.8 Article

Highly stretchable self-sensing actuator based on conductive photothermally-responsive hydrogel

期刊

MATERIALS TODAY
卷 50, 期 -, 页码 35-43

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.mattod.2021.05.008

关键词

Photothermal responsive hydrogel; Conducting polymer; LCST; Strain sensor; Self-monitoring; Soft actuator; Soft robotics

资金

  1. ONR [N000141712117]
  2. AFOSR [FA9550-17-1-0311, FA9550-18-1-0449, FA9550-20-1-0344]
  3. NSF CAREER award [1724526]
  4. [N00014-18-1-2314]

向作者/读者索取更多资源

This study presents a soft robotic strategy that couples actuation and strain sensing into a single homogeneous material, which exhibits photo/thermal-responsiveness and piezoresistive-responsiveness, enabling remotely-triggered actuation and local strain-sensing. The material demonstrated ultra-high stretchability and large volume shrinkage, with a drastic change in conductivity upon locomotion. The multifunctional sensory actuatable materials may lead to the next generation of soft robots with higher levels of autonomy and complexity.
Soft robots built with active soft materials have been increasingly attractive. Despite tremendous efforts in soft sensors and actuators, it remains extremely challenging to construct intelligent soft materials that simultaneously actuate and sense their own motions, resembling living organisms' neuromuscular behaviors. This work presents a soft robotic strategy that couples actuation and strain sensing into a single homogeneous material, composed of an interpenetrating double-network of a nanostructured thermo-responsive hydrogel poly(N-isopropylacrylamide) (PNIPAAm) and a light absorbing, electrically conductive polymer polypyrrole (PPy). This design grants the material both photo/thermal-responsiveness and piezoresistive-responsiveness, enabling remotely-triggered actuation and local strain-sensing. This self-sensing actuating soft material demonstrated ultra-high stretchability (210%) and large volume shrinkage (70%) rapidly upon irradiation or heating (13%/ degrees C, 6-time faster than conventional PNIPAAm). The significant deswelling of the hydrogel network induces densification of percolation in the PPy network, leading to a drastic conductivity change upon locomotion with a gauge factor of 1.0. The material demonstrated a variety of precise and remotely driven photo-responsive locomotion such as signal-tracking, bending, weightlifting, object grasping and transporting, while simultaneously monitoring these motions itself via real-time resistance change. The multifunctional sensory actuatable materials may lead to the next-generation soft robots of higher levels of autonomy and complexity with self-diagnostic feedback control.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据