4.3 Article

In vivo therapeutic evaluation of a novel bis-lawsone derivative against tumor following delivery using mesoporous silica nanoparticle based redox-responsive drug delivery system

出版社

ELSEVIER
DOI: 10.1016/j.msec.2021.112142

关键词

Anticancer; Apoptosis; Controlled-release; MSN; Redox-responsive; Targeted therapy

资金

  1. SERB Startup research grant [SRG/2019/000272]

向作者/读者索取更多资源

The study evaluated the in vivo therapeutic efficacy and systemic toxicity profile of a synthetic anticancer compound, showing that a controlled drug delivery system using PBA functionalized and GN gated MSN can enhance the therapeutic potential of the compound without causing significant systemic toxicity.
Herein, we have evaluated the in vivo therapeutic efficacy and systemic toxicity profile of a synthetic anticancer compound [3,3'-((4-(trifluoromethyl)phenyl)methylene)bis(2-hydroxynaphthalene-1,4-dione)]. A multifunctional mesoporous silica nanoparticle (MSN) based drug delivery network was also fabricated which specifically showed targeting nature towards the cancer cell. The mesopores of silica nanoparticles were tagged with phenyl boronic acid (PBA) for targeted drug delivery into tumor tissue. 1j was then loaded inside the nanocarriers followed by pore blocking with gold nanoparticles (GN) to attain a redox-responsive controlled drug delivery pattern. The synthesized nanocarriers (1j@-MSN-PBA-GN) having mean diameter of similar to 86 nm exhibited a moderate 1j loading content of 13.68% with overall negative surface charge. Both the targeted and non-targeted nanoformulations were tested for their anticancer activities both in vitro and in vivo models, and found more effective as compared with free 1j treatment. However, the targeted nanoformulations showed higher therapeutic effect due to increased cellular internalization and caused mitochondria-dependent apoptosis in MCF-7 cells via oxidative stress. Besides, the targeted nanoformulation significantly inhibited in the development of solid tumor in comparison to non-targeted nanoformulations and free 1j as a consequence of increased internalization of the drug-candidate in tumor tissue. Therefore, this study proposes that 1j can be considered as a potent anti-carcinogenic compound in vivo and its therapeutic potential is further increased by using PBA functionalized and GN gated MSN-based controlled drug delivery system without showing any significant systemic toxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据