4.7 Article

Land use conversion to improve water quality in high DIN risk, low-lying sugarcane areas of the Great Barrier Reef catchments

期刊

MARINE POLLUTION BULLETIN
卷 167, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.marpolbul.2021.112373

关键词

Constructed wetlands; Ecosystem services; Land transition; Nutrients; Water quality

资金

  1. Australian Government's National Environment Science Program Tropical Water Quality Hub [2.1.2]

向作者/读者索取更多资源

Eutrophication of coastal and nearshore receiving environments downstream of intensive agricultural production areas is a global issue. The Reef 2050 Water Quality Improvement Plan (2017-2022) sets ambitious targets for reducing pollutant loads entering the Great Barrier Reef from contributing agricultural catchments. At a regional scale, the Wet Tropics end-of-catchment target load reduction for dissolved inorganic nitrogen (DIN) is 60% from the 2012-2013 anthropogenic load level. However, not even with the combined efforts of the Reef Regulations (December 2019) mandate and adoption of best practice nutrient management on farm, is it likely that these DIN targets will be reached. Thus, there is a need for innovative and cost-effective approaches to deliver further water quality improvement. Transitioning low-lying, marginal sugarcane land to alternative land uses that require lower or no nitrogen inputs, but still provide farmers with income streams, is a potentially attractive solution. In this study, a multi-criteria analysis was conducted to identify sites suitable for such alternative land uses. The cost-effectiveness of DIN reductions from these land use changes were calculated, accounting for reductions in annuity gross margins and land conversion cost. In certain locations (where conversion costs are low and DIN reductions are high) treatment wetlands and no-input cattle grazing offer cost-effective DIN reduction in the range of 20-26$/kg DIN. This compares favourably with existing agricultural extension-based approaches (c. $50/kg DIN reduction). Ecosystem service wetlands (i.e., wetland restoration for fish production) - again when appropriately situated - offer the prospect of even more cost-effective performance (11-14 $/kg DIN reduction). These results, in conjunction with best management practices, support the premise that alternative land uses are cost-effective options for improving water quality in certain areas of low-lying, low productivity sugarcane land. On-going investments by government in addition to private market funding mechanisms could be appropriate for supporting such land use transitions. These approaches need to be tested and refined via targeted pilot projects, as part of a whole-of-landscape approach to achieve broader reef water quality targets.
Eutrophication of coastal and nearshore receiving environments downstream of intensive agricultural production areas is a global issue. The Reef 2050 Water Quality Improvement Plan (2017-2022) sets ambitious targets for reducing pollutant loads entering the Great Barrier Reef from contributing agricultural catchments. At a regional scale, the Wet Tropics end-of-catchment target load reduction for dissolved inorganic nitrogen (DIN) is 60% from the 2012-2013 anthropogenic load level. However, not even with the combined efforts of the Reef Regulations (December 2019) mandate and adoption of best practice nutrient management on farm, is it likely that these DIN targets will be reached. Thus, there is a need for innovative and cost-effective approaches to deliver further water quality improvement. Transitioning low-lying, marginal sugarcane land to alternative land uses that require lower or no nitrogen inputs, but still provide farmers with income streams, is a potentially attractive solution. In this study, a multi-criteria analysis was conducted to identify sites suitable for such alternative land uses. The cost-effectiveness of DIN reductions from these land use changes were calculated, accounting for reductions in annuity gross margins and land conversion cost. In certain locations (where conversion costs are low and DIN reductions are high) treatment wetlands and no-input cattle grazing offer cost-effective DIN reduction in the range of 20-26$/kg DIN. This compares favourably with existing agricultural extension-based approaches (c. $50/kg DIN reduction). Ecosystem service wetlands (i.e., wetland restoration for fish production) - again when appropriately situated - offer the prospect of even more cost-effective performance (11-14 $/kg DIN reduction). These results, in conjunction with best management practices, support the premise that alternative land uses are cost-effective options for improving water quality in certain areas of low-lying, low productivity sugarcane land. On-going investments by government in addition to private market funding mechanisms could be appropriate for supporting such land use transitions. These approaches need to be tested and refined via targeted pilot projects, as part of a whole-of-landscape approach to achieve broader reef water quality targets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据