4.7 Review

Targeting receptor-ligand chemistry for drug delivery across blood-brain barrier in brain diseases

期刊

LIFE SCIENCES
卷 274, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2021.119326

关键词

Blood-brain barrier; Nanoparticles; Receptor mediated-drug delivery

资金

  1. Manipal School of Life Sciences and Manipal Academy of Higher Education, Manipal

向作者/读者索取更多资源

The blood-brain barrier is a complex structure composed of endothelial cells with tight junctions and regulated by various cells like astrocytes and neurons. While traditional drug delivery methods pose challenges for treating brain diseases, receptor-mediated drug delivery is considered an efficient and safe strategy that exploits the internalization of ligands by specific receptors on the blood-brain barrier.
The blood-brain barrier (BBB) is composed of a layer of endothelial cells that is interspersed with a series of tight junctions and characterized by the absence of fenestrations. The permeability of this barrier is controlled by junctions such as tight junctions and adherent junctions as well as several cells such as astrocytes, pericytes, vascular endothelial cells, neurons, microglia, and efflux transporters with relatively enhanced expression. It plays a major role in maintaining homeostasis in the brain and exerts a protective regulatory control on the influx and efflux of molecules. However, it proves to be a challenge for drug delivery strategies that target brain diseases like Dementia, Parkinson's Disease, Alzheimer's Disease, Brain Cancer or Stroke, Huntington's Disease, Lou Gehrig's Disease, etc. Conventional modes of drug delivery are invasive and have been known to contribute to a leaky BBB, recent studies have highlighted the efficiency and relative safety of receptor-mediated drug delivery. Several receptors are exhibited on the BBB, and actively participate in nutrient uptake, and recognize specific ligands that modulate the process of endocytosis. The strategy employed in receptor-mediated drug delivery exploits this process of tricking the receptors into internalizing ligands that are conjugated to carrier systems like liposomes, nanoparticles, monoclonal antibodies, enzymes etc. These in turn are modified with drug molecules, therefore leading to delivery to desired target cells in brain tissue. This review comprehensively explores each of those receptors that can be modified to serve such purposes as well as the currently employed strategies that have led to increased cellular uptake and transport efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据