4.6 Article

Manipulation of a Nonconductive Droplet in an Aqueous Fluid with AC Electric Fields: Droplet Dewetting, Oscillation, and Detachment

期刊

LANGMUIR
卷 37, 期 41, 页码 12098-12111

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.1c01934

关键词

-

资金

  1. National Nature Science Foundation of China [12072359]

向作者/读者索取更多资源

In this study, electrowetting was used to manipulate non-conductive oil droplets in a conductive water environment. Experimental results show that at specific AC frequencies, droplets exhibit oscillation resonance on the substrate, promoting detachment.
Electrowetting (EW) is an effective method for droplet manipulation in microfluidics. In traditional EW, a conductive droplet is actuated, which spreads on a solid substrate. Recently, we considered an opposite phenomenon of droplet actuation in EW: inducing nonconductive droplet dewetting and detaching from the substrate. An oil/water system is used in which the oil droplet (nonconductive) is actuated on a flat substrate in surrounding water (conductive) by EW. In this work, alternating current (AC) electric fields are applied to EW, and the transient dynamics of droplet dewetting, oscillation, and detachment with the AC signals are investigated. The droplet is not in contact with electrodes, and it dances freely on the substrate. Experiments are performed in a wide range of voltages and AC frequencies. To demonstrate the droplet dynamics, we divide the full process of droplet manipulation into three distinguishable periods, that is, an initiating period, a steady oscillation period, and a detaching condition. Transient droplet dewetting is considered in the initiating period, and we obtain the distribution of the contact line friction factor. In steady oscillation, the oscillation resonance is verified from the oscillating amplitude of the contact line. Different periodical features are found for the droplet dancing at the resonance frequencies and departure from resonance. The droplet is detached at high voltages, and we provide a map for the detachable and nondetachable zones. The voltage is the dominant factor determining the droplet detachment; however, the AC frequency has notable influences on the critical voltage. The detachment is promoted when the AC frequency is within the region of the oscillation resonance (e.g., 20 < f < 75 Hz). In this region, the detaching process is not monotonic but instead, the droplet rebounds by several times before it is completely detached.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据