4.7 Article

The Autophagy Inducer Spermidine Protects Against Metabolic Dysfunction During Overnutrition

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/gerona/glab145

关键词

Aging; FGF21; High-fat diet; Metabolism; Mice

资金

  1. National Institute on Aging [R01 AG050441]
  2. Glenn/AFAR postdoctoral fellowship

向作者/读者索取更多资源

The study shows that spermidine affects systemic metabolism through various mechanistic pathways, including increasing FGF21 expression in the liver and enhancing lipolysis in visceral fat to counteract high-fat diet-induced obesity.
Autophagy, a process catabolizing intracellular components to maintain energy homeostasis, impacts aging and metabolism. Spermidine, a natural polyamine and autophagy activator, extends life span across a variety of species, including mice. In addition to protecting cardiac and liver tissue, spermidine also affects adipose tissue through unexplored mechanisms. Here, we examined spermidine in the links between autophagy and systemic metabolism. Consistently, daily injection of spermidine delivered even at late life is sufficient to cause a trend in life-span extension in wild-type mice. We further found that spermidine has minimal metabolic effects in young and old mice under normal nutrition. However, spermidine counteracts high-fat diet (HFD)-induced obesity by increasing lipolysis in visceral fat. Mechanistically, spermidine increases the hepatokine fibroblast growth factor 21 (FGF21) expression in liver without reducing food intake. Spermidine also modulates FGF21 in adipose tissues, elevating FGF21 expression in subcutaneous fat, but reducing it in visceral fat. Despite this, FGF21 is not required for spermidine action, since Fgf21(-/-) mice were still protected from HFD. Furthermore, the enhanced lipolysis by spermidine was also independent of autophagy in adipose tissue, given that adipose-specific autophagy-deficient (Beclin-1(flox/+) Fabp4-cre) mice remained spermidine-responsive under LIFD. Our results suggest that the metabolic effects of spermidine occur through systemic changes in metabolism, involving multiple mechanistic pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据