4.7 Article

Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy

期刊

FREE RADICAL BIOLOGY AND MEDICINE
卷 90, 期 -, 页码 12-23

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2015.11.013

关键词

Diabetic cardiomyopathy; ERK1/2; Mitochondria; Mito-TEMPO; Reactive oxygen species

资金

  1. Canadian Institutes of Health Research [MOP-133657]
  2. National Natural Science Foundation of China [81470499]
  3. NIH R01 [HL-087861, GM-112930]
  4. China Scholarship Council
  5. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R01HL087861] Funding Source: NIH RePORTER
  6. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM112930] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Aims: The mitochondria are important sources of reactive oxygen species (ROS) in the heart. Mitochondrial ROS production has been implicated in the pathogenesis of diabetic cardiomyopathy, suggesting that therapeutic strategies specifically targeting mitochondrial ROS may have benefit in this disease. We investigated the therapeutic effects of mitochondria-targeted antioxidant mito-TEMPO on diabetic cardiomyopathy. Methods: The mitochondria-targeted antioxidant mito-TEMPO was administrated after diabetes onset in a mouse model of streptozotocin-induced type-1 diabetes and type-2 diabetic db/db mice. Cardiac adverse changes were analyzed and myocardial function assessed. Cultured adult cardiomyocytes were stimulated with high glucose, and mitochondrial superoxide generation and cell death were measured. Results: Incubation with high glucose increased mitochondria superoxide generation in cultured cardiomyocytes, which was prevented by mito-TEMPO. Co-incubation with mito-TEMPO abrogated high glucose-induced cell death. Mitochondrial ROS generation, and intracellular oxidative stress levels were induced in both type-1 and type-2 diabetic mouse hearts. Daily injection of mito-TEMPO for 30 days inhibited mitochondrial ROS generation, prevented intracellular oxidative stress levels, decreased apoptosis and reduced myocardial hypertrophy in diabetic hearts, leading to improvement of myocardial function in both type-1 and type-2 diabetic mice. Incubation with mito-TEMPO or inhibition of Nox2-containing NADPH oxidase prevented oxidative stress levels and cell death in high glucose-stimulated cardiomyocytes. Mechanistic study revealed that the protective effects of mito-TEMPO were associated with down-regulation of ERK1/2 phosphorylation. Conclusions: Therapeutic inhibition of mitochondrial ROS by mito-TEMPO reduced adverse cardiac changes and mitigated myocardial dysfunction in diabetic mice. Thus, mitochondria-targeted antioxidants may be an effective therapy for diabetic cardiac complications. (C) 2015 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据