4.7 Article

Manganese ions enhance mitochondrial H2O2 emission from Krebs cycle oxidoreductases by inducing permeability transition

期刊

FREE RADICAL BIOLOGY AND MEDICINE
卷 99, 期 -, 页码 43-53

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2016.07.026

关键词

Mitochondria; Manganese; Reactive oxygen species (ROS); Mitochondrial permeability transition (mPT); Complex II (succinate:ubiquinone oxidoreductase); 2-oxoglutarate dehydrogenase (OGDH)

资金

  1. Deutsche Forschungsgemeinschaft [SFB 815]

向作者/读者索取更多资源

Manganese-induced toxicity has been linked to mitochondrial dysfunction and an increased generation of reactive oxygen species (ROS). We could recently show in mechanistic studies that Mn2+ ions induce hydrogen peroxide (H2O2) production from the ubiquinone binding site of mitochondrial complex II (HQ) and generally enhance H2O2 formation by accelerating the rate of superoxide dismutation. The present study with intact mitochondria reveals that manganese additionally enhances H2O2 emission by inducing mitochondrial permeability transition (mPT). In mitochondria fed by NADH-generating substrates, the combination of Mn2+ and different respiratory chain inhibitors led to a dynamically increasing H(2)O(2)emission which was sensitive to the mPT inhibitor cyclosporine A (CsA) as well as Ru-360, an inhibitor of the mitochondrial calcium uniporter (MCU). Under these conditions, flavin-containing enzymes of the mitochondrial matrix, e.g. the mitochondrial 2-oxoglutaratedehydrogenase (OGDH), were major sources of ROS. With succinate as substrate, Mn2+ stimulated ROS production mainly at complex II, whereby the applied succinate concentration had a marked effect on the tendency for mPT. Also Ca2+ increased the rate of H2O2 emission by mPT, while no direct effect on ROS-production of complex II was observed. The present study reveals a complex scenario through which manganese affects mitochondrial H2O2 emission: stimulating its production from distinct sites (e.g. site IIQ), accelerating superoxide dismutation and enhancing the emission via mPT which also leads to the loss of soluble components of the mitochondrial antioxidant systems and favors the ROS production from flavin-containing oxidoreductases of the Krebs cycle. (C) 2016 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据