4.4 Article

An Analytical Solution for the Initiation and Early Progression of Fretting Wear in Spherical Contacts

期刊

出版社

ASME
DOI: 10.1115/1.4051585

关键词

contact mechanics; friction; sliding; surfaces; wear; fretting

资金

  1. Department of Energy [2506U87, RH452]

向作者/读者索取更多资源

This article derives analytical solutions to calculate the wear volume at the initiation of fretting motion and its early progression. The analytical results are verified by finite element analysis and the effects of plasticity on the wear volume are investigated.
This article derives analytical solutions to calculate the wear volume at the initiation of fretting motion and its early progression over the first few oscillation cycles. The Archard-based model considers a deformable hemisphere that is contact with a deformable flat block. The material pairs investigated are special alloys, the Inconel 617/Incoloy 800H, and Inconel 617/Inconel 617. The analytical study begins with a unidirectional frictional sliding contact, where the local interfacial sliding distance and the nominal sliding distance at the initiation of gross slip are derived. The obtained analytical expressions for unidirectional sliding are then used to derive the corresponding wear volume for the initiation and early progression of gross slip and the wear volume for a general fretting cycle under elastic conditions. These analytical derivations are all verified by the finite element analysis (FEA). The FEA method and the analytical solutions render virtually identical results for both similar and dissimilar material pairs. The effects of plasticity on the wear volume under elastic-plastic conditions are also investigated. It is found that the fretting wear volumes obtained from the FEA simulations, which include plasticity, are close to those obtained from the analytical expressions for purely elastic regimes. All the results are presented in normalized forms, which can be easily generalized and applied to three-dimensional fretting wear of other material pairs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据