4.7 Article

A Biallelic Frameshift Mutation in Nephronectin Causes Bilateral Renal Agenesis in Humans

期刊

JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY
卷 32, 期 8, 页码 1871-1879

出版社

AMER SOC NEPHROLOGY
DOI: 10.1681/ASN.2020121762

关键词

bilateral renal agenesis; new pathogenic gene; nephronectin

资金

  1. Science and Technology Innovation Program of Hunan Province [2019SK1010, 2020SK2072]

向作者/读者索取更多资源

This study identified a novel genetic cause of bilateral renal agenesis, potentially offering a new target for genetic diagnosis and prenatal diagnosis for families affected by the condition.
Background Bilateral renal agenesis (BRA) is a lethal con genital anomaly caused by the failure of normal development of both kidneys early in embryonic development. Oligohydramnios on fetal ultrasonography reveals BRA. Although the exact causes are not clear, BRA is associated with mutations in many renal development genes. However, molecular diagnostics do not pick up many clinical patients. Nephronectin (NPNT) may be a candidate protein for widening diagnosis. It is essential in kidney development, and knockout of Npnt in mice frequently leads to kidney agenesis or hypoplasia. Methods A consanguineous Han family experienced three cases of induced abortion in the second trimester of pregnancy, due to suspected BRA. Whole-exome sequencing (WES)-based homozygosity mapping detected underlying genetic factors, and a knock-in mouse model confirmed the renal agenesis phenotype. Results WES and evaluation of homozygous regions in II:3 and II:4 revealed a pathologic homozygous frameshift variant in NPNT (NM_001184690:exon8:c.777dup/p.Lys260*), which leads to a premature stop in the next codon. The truncated NPNT protein exhibited decreased expression, as confirmed in vivo by the overexpression of WT and mutated NPNT. A knock-in mouse model homozygous for the detected Npnt mutation replicated the BRA phenotype. Conclusions A biallelic loss-of-function NPNT mutation causing an autosomal recessive form of BRA in humans was confirmed by the corresponding phenotype of knock-in mice. Our results identify a novel genetic cause of BRA, revealing a new target for genetic diagnosis, prenatal diagnosis, and preimplantation diagnosis for families with BRA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据