4.8 Article

Optimizing Hydrogen Storage in MOFs through Engineering of Crystal Morphology and Control of Crystal Size

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 143, 期 28, 页码 10727-10734

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.1c04926

关键词

-

资金

  1. US Department of Energy, Office of Energy Efficiency and Renewable Energy [DE-EE0007046]

向作者/读者索取更多资源

By improving packing efficiency and crystal size distributions, the hydrogen storage density of metal-organic frameworks (MOFs) can be significantly enhanced, maximizing storage capacity. System model projections show that engineering crystal morphology/size or using bimodal distributions of cubic crystal sizes can surpass the current volumetric capacity of compressed storage systems.
Metal-organic frameworks (MOFs) are promising materials for hydrogen storage that fail to achieve expected theoretical values of volumetric storage density due to poor powder packing. A strategy that improves packing efficiency and volumetric hydrogen gas storage density dramatically through engineered morphologies and controlled-crystal size distributions is presented that holds promise for maximizing storage capacity for a given MOF. The packing density improvement, demonstrated for the benchmark sorbent MOF-5, leads to a significant enhancement of volumetric hydrogen storage performance relative to commercial MOF-5. System model projections demonstrate that engineering of crystal morphology/size or use of a bimodal distribution of cubic crystal sizes in tandem with system optimization can surpass the 25 g/L volumetric capacity of a typical 700 bar compressed storage system and exceed the DOE targets 2020 volumetric capacity (30 g/L). Finally, a critical link between improved powder packing density and reduced damage upon compaction is revealed leading to sorbents with both high surface area and high density.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据