4.5 Article

Deep learning-based stereophonic acoustic echo suppression without decorrelation

期刊

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
卷 150, 期 2, 页码 816-829

出版社

ACOUSTICAL SOC AMER AMER INST PHYSICS
DOI: 10.1121/10.0005757

关键词

-

向作者/读者索取更多资源

This paper proposes a new method using convolutional recurrent network to suppress stereophonic echo by estimating a nonlinear gain, which avoids the potential issues of reducing audio quality and stereophonic spatial perception in traditional methods.
Traditional stereophonic acoustic echo cancellation algorithms need to estimate acoustic echo paths from stereo loudspeakers to a microphone, which often suffers from the nonuniqueness problem caused by a high correlation between the two far-end signals of these stereo loudspeakers. Many decorrelation methods have already been proposed to mitigate this problem. However, these methods may reduce the audio quality and/or stereophonic spatial perception. This paper proposes to use a convolutional recurrent network (CRN) to suppress the stereophonic echo components by estimating a nonlinear gain, which is then multiplied by the complex spectrum of the microphone signal to obtain the estimated near-end speech without a decorrelation procedure. The CRN includes an encoder-decoder module and two-layer gated recurrent network module, which can take advantage of the feature extraction capability of the convolutional neural networks and temporal modeling capability of recurrent neural networks simultaneously. The magnitude spectra of the two far-end signals are used as input features directly without any decorrelation preprocessing and, thus, both the audio quality and stereophonic spatial perception can be maintained. The experimental results in both the simulated and real acoustic environments show that the proposed algorithm outperforms traditional algorithms such as the normalized least-mean square and Wiener algorithms, especially in situations of low signal-to-echo ratio and high reverberation time RT60. (C) 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据