4.5 Article

Parallel multi-objective optimization approaches for protein encoding

期刊

JOURNAL OF SUPERCOMPUTING
卷 78, 期 4, 页码 5118-5148

出版社

SPRINGER
DOI: 10.1007/s11227-021-04073-z

关键词

Parallel multi-objective optimization approach; Protein encoding; Synchronous and asynchronous parallelism; Design of multiple genes

资金

  1. MCIU (Ministry of Science, Innovation and Universities, Spain)
  2. AEI (State Research Agency, Spain)
  3. ERDF (European Regional Development Fund, EU) [IB16002, PID2019-107299GB-I00/AEI/10.13039/501100011033]
  4. Government of Extremadura (Spain)

向作者/读者索取更多资源

One of the main challenges in synthetic biology is maximizing protein expression levels through multiple copies of the same gene, treated as a multi-objective optimization problem. Recent research has shown success in using the artificial bee colony algorithm to address this issue, although protein length and copy number impact computational costs. This study proposes parallel bioinspired designs to tackle protein encoding in multiprocessor systems, achieving significant quality levels in encoded proteins.
One of the main challenges in synthetic biology lies in maximizing the expression levels of a protein by encoding it with multiple copies of the same gene. This task is often conducted under conflicting evaluation criteria, which motivates the formulation of protein encoding as a multi-objective optimization problem. Recent research reported significant results when adapting the artificial bee colony algorithm to address this problem. However, the length of proteins and the number of copies have a noticeable impact in the computational costs required to attain satisfying solutions. This work is aimed at proposing parallel bioinspired designs to tackle protein encoding in multiprocessor systems, considering different thread orchestration schemes to accelerate the optimization process while preserving the quality of results. Comparisons of solution quality with other approaches under three multi-objective quality metrics show that the proposed parallel method reaches significant quality in the encoded proteins. In addition, experimentation on six real-world proteins gives account of the benefits of applying asynchronous shared-memory schemes, attaining efficiencies of 92.11% in the most difficult stages of the algorithm and mean speedups of 33.28x on a 64-core server-grade system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据