4.7 Article

Combining magnet-induced nonlinearity and centrifugal softening effect to realize high-efficiency energy harvesting in ultralow-frequency rotation

期刊

JOURNAL OF SOUND AND VIBRATION
卷 505, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2021.116146

关键词

Rotational energy harvesting; Centrifugal softening effect; Magnetic nonlinearity; Ultralow-frequency rotation

向作者/读者索取更多资源

This paper proposes a novel energy harvester with the centrifugal softening effect and the magnet-induced nonlinearity, which shows good performance in ultralow-frequency rotational energy harvesting. The experimental validation and comparison among different piezoelectric energy harvesters support the effectiveness of the proposed model.
Few studies have successfully achieved high-efficiency energy harvesting in ultralowfrequency rotational motion where the rotational frequency is less than 2 Hz (120 rpm). In order to solve this challenge, this paper proposes a novel energy harvester with the centrifugal softening effect (CSE) and the magnet-induced nonlinearity. In a rotational coordinate system, the corresponding theoretical model is derived to reveal the mechanism of the CSE and to analyze the influence of the nonlinear magnetic force on the output power of the proposed harvester. Furthermore, the mechanism of the centrifugal stiffening effect (C_stiffen_E) is also theoretically analyzed. The analysis results indicate that based on the C_stiffen_E, the self-tuning harvester with a wider bandwidth can be obtained, and the CSE is better than the C_stiffen_E in enhancing the ultralow-frequency rotational energy harvesting. Meanwhile, the derived model is experimentally validated via comparisons among different piezoelectric energy harvesters (PEHs) including the linear inverse PEH, the nonlinear inverse PEH and the nonlinear forward PEH. The experimental results show that the nonlinear inverse PEH combining the magnet-induced nonlinearity and the CSE is capable of realizing high-efficiency energy harvesting in the rotational speed range of 60-120 rpm. The corresponding RMS output voltage is larger than 4 V, which is promising to provide the continuous power source for a wireless sensor. In addition, the parametric studies are conducted to provide theoretical guidance for the further optimization design of the proposed PEH. (c) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据