4.6 Article

A novel graded auxetic honeycomb core model for sandwich structures with increasing natural frequencies

期刊

JOURNAL OF SANDWICH STRUCTURES & MATERIALS
卷 24, 期 2, 页码 1313-1339

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/10996362211030565

关键词

Angle graded auxetic honeycomb; free vibration analysis; sandwich structure; finite element analysis; quasi-3D exponential theory

向作者/读者索取更多资源

A novel angle graded auxetic honeycomb (AGAH) core with varying cell angles and constant wall thickness along the gradation has been designed. New analytical relations were proposed to predict the equivalent elastic properties of the core, which enhances specific stiffness and natural frequencies of sandwich structures. Analytical and finite element analyses were conducted to assess the core performance and investigate its impact on the vibration response of sandwich panels.
A novel angle graded auxetic honeycomb (AGAH) core is designed for sandwich structures in the present study. The angle of the cells is varied through the thickness of the AGAH core using linear functions. Therefore, the thickness of the cell walls is kept constant along the gradation of the cell angle, and the length of the cell walls is changed through the core thickness as the result of angle variation. New analytical relations are proposed to predict the equivalent elastic properties of the AGAH core. The performance of the new proposed core is analytically assessed for the vibrational behavior of a sandwich plate. The governing equations are deduced adopting Hamilton's principle under the assumption of quasi-3D exponential plate theory. Three-dimensional finite element (3D-FE) simulation is accomplished to verify the analytical results of the vibrational response of the sandwich structure. The influence of variation of the cell wall, the cell angle and cell aspect ratio of AGAH core, and geometric parameters of the sandwich structure are investigated on the vibration response of the sandwich panel. The present graded design of the auxetic honeycomb enhances the specific stiffness (i.e., stiffness to density ratio) and consequently increases the natural frequencies of sandwich structures with this type of core.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据