4.8 Article

A modified cathode catalyst layer with optimum electrode exposure for high current density and durable proton exchange membrane fuel cell operation

期刊

JOURNAL OF POWER SOURCES
卷 496, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2021.229816

关键词

PEMFC; Modified catalyst layer; Pyrochlore oxide; Durability; Mass transport

资金

  1. 2021 Joint Research Project of Institutes of Science and Technology
  2. nextgeneration energy material source technology development project [21-ET-08]

向作者/读者索取更多资源

The study developed advanced membrane electrode assemblies with excellent durability and fuel cell performance that can operate under low humidity, enhanced by the interaction between ZrGdNR and ionomer. The significant increase in fuel cell performance and durability due to the presence of ZrGdNR in the catalyst layer may be a promising approach for low catalyst usage in PEMFCs operating under low humidification.
In proton exchange membrane fuel cells (PEMFCs), polymeric ionomer functions, as the membrane that transports protons and water from one electrode to another and as the catalyst binder and transport channel within the catalyst layer responsible for the electrochemical activity. Here, advanced membrane electrode assemblies (MEAs) of a hierarchical design having excellent durability and fuel cell performance that can be operated under low humidity is developed. The interaction of the pyrochlore Zr2Gd2O7 nanorod (ZrGdNR) with the ionomer used in both the electrolyte and catalyst layer enhances the oxygen reduction reaction and mass transport due to the multivalent property and oxygen vacancies. Open circuit voltage holding test and fluoride ion emission rate reveal the radical scavenger effect of ZrGdNR into the MEA to improve its durability. Compared to the conventional MEA, the modified MEA under 100 and 20% relative humidity delivers 1363 and 767 mW cm-2 of maximum power density, which is 1.8 and 6.3 times higher, respectively. The enormous increase in fuel cell performance and durability due to the 0.29 wt% of ZrGdNR with respect to Pt/C into the catalyst layer may be a promising approach for low catalyst usage in PEMFC having the ability to operate under low humidification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据