4.8 Article

Ionomer network of catalyst layers for proton exchange membrane fuel cell

期刊

JOURNAL OF POWER SOURCES
卷 506, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2021.230186

关键词

Proton exchange membrane fuel cell; Catalyst ink; Ionomer distribution; Proton conductivity; Short-side-chain perfluorosulfonic acid ionomer

资金

  1. National Key Research and Development Program of China [2018YFE0105200]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA21090101]
  3. LiaoNing Revitalization Talents Program [XLYC1902079]
  4. State Grid Corporation Headquarters Science and Technology Project [521205190007]
  5. Science and Technology Project of State Grid Anhui Electric Power Company [52120518001Y]

向作者/读者索取更多资源

This study investigates the performance and internal mechanism of SSC PFSA ionomers in proton exchange membrane fuel cells, revealing the correlation between the distribution of different EW ionomers in CL and their performance. By increasing IEC and reducing ionomer adsorption on Pt/C, the formation of Pt/C-ionomer connection network is facilitated, leading to a more uniform ionomer proton conduction network in the CL.
The ionomer binder within catalyst layer (CL) plays a vital role in proton exchange membrane fuel cell (PEMFC). Short-side-chain (SSC) perfluorosulfonic acid (PFSA) ionomers have recently gained considerable attention due to their superior PEMFC performance. However, most studies have focused primarily on SSC ionomer cell performance and seldomly explore the internal mechanism. The intrinsic relationships between catalyst ink and cell performance are still vague. Herein, the structure-property correlations among catalyst ink, CL microstructure, and PEMFC performance with different equivalent weight (EW) ionomers were proposed, especially, the distribution of different EW ionomers in the CL was observed. Our results show that the high ion exchange capacity (IEC) and low ionomer adsorption on Pt/C increase the ease of SSC ionomer to form Pt/C-ionomer connection network in the catalyst ink. Subsequently, a more uniform and continuous ionomer proton conduction network was observed in the CL containing SSC ionomer, which increased the active area, but at the cost of macropore volume. Combined with the high IEC of SSC ionomer, superior proton conductivity and high mass transport resistance for SSC ionomer electrodes are manifested in the ultimate performance. This work also provides an effective way to construct high-performance fuel cells containing SSC PFSA ionomer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据