4.5 Article

Topological properties of bulk and bilayer 2M WS2: a first-principles study

期刊

JOURNAL OF PHYSICS-CONDENSED MATTER
卷 33, 期 46, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-648X/ac1de1

关键词

topological materials; transition metal dichalcogenides; Berry curvature; non-linear Hall effects

资金

  1. Indian Institute of Science [SG/MHRD-19-0001]
  2. DST-SERB [SRG/2020/000153]
  3. Prime Minister's Research Fellowship

向作者/读者索取更多资源

The recently discovered 2M phase of bulk WS2 exhibits superconductivity and potential to be a topological superconductor. Through detailed first-principles analysis, it has been predicted that bilayer 2M WS2 can be a new two-dimensional topological material with protected edge states. The broken inversion symmetry in this bilayer leads to non-linear responses and can be identified through Berry curvature dipole signals.
Recently discovered 2M phase of bulk WS2 was observed to exhibit superconductivity with a critical temperature of 8.8 K, the highest reported among superconducting transition metal dichalcogenides. Also predicted to support protected surface states, it could be a potential topological superconductor. In the present study, we perform a detailed first-principles analysis of bulk and bilayer 2M WS2. We report a comprehensive investigation of the bulk phase, comparing structural and electronic properties obtained from different exchange correlation functionals to the experimentally reported values. By calculation of the Z(2) invariant and surface states, we give support for its non-trivial band nature. Based on the insights gained from the analysis of the bulk phase, we predict bilayer 2M WS(2 )as a new two-dimensional topological material. We demonstrate its dynamical stability from first-principles phonon computations and present its electronic properties, highlighting the band inversions between the W d and S p states. By means of Z(2) invariant computations and a calculation of the edge states, we show that bilayer 2M WS2 exhibits protected, robust edge states. The broken inversion symmetry in this newly proposed bilayer also leads to the presence of Berry curvature dipole and resulting non-linear responses. We compute the Berry curvature distribution and the dipole as a function of Fermi energy. We propose that Berry curvature dipole signals, which are absent in the centrosymmetric bulk 2M WS2, can be signatures of the bilayer. We hope our predictions lead to the experimental realization of this as-yet-undiscovered two-dimensional topological material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据