4.6 Article

Chemical Modification of Polaronic States in Anatase TiO2(101)

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 125, 期 26, 页码 14348-14355

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.1c03684

关键词

-

资金

  1. European Research Council Advanced Grant ENERGYSURF
  2. EPSRC (U.K.) [EP/D068673/1]
  3. EU COST Action [CM1104]
  4. Royal Society (U.K.) through a Wolfson Research Merit Award
  5. EPSRC [EP/D068673/1] Funding Source: UKRI

向作者/读者索取更多资源

This study focuses on the Ti3+ polaronic states in anatase TiO2(101) and demonstrates the ability to tune the excited state resonance of polarons by controlling the chemical environment. Subsurface polarons in anatase TiO2(101) undergo state changes upon subband-gap photoexcitation, with the binding energy influenced by formic acid adsorption. The behavior observed, including significant changes in photoexcitation oscillator strength resonating with states above the Fermi level, is likely due to surface migration of subsurface oxygen vacancies.
Two polymorphs of TiO2, anatase and rutile, are employed in photocatalytic applications. It is broadly accepted that anatase is the more catalytically active and subsequently finds wider commercial use. In this work, we focus on the Ti3+ polaronic states of anatase TiO2(101), which lie at similar to 1.0 eV binding energy and are known to increase catalytic performance. Using UV-photoemission and two-photon photoemission spectroscopies, we demonstrate the capability to tune the excited state resonance of polarons by controlling the chemical environment. Anatase TiO2(101) contains subsurface polarons which undergo subband-gap photoexcitation to states similar to 2.0 eV above the Fermi level. Formic acid adsorption dramatically influences the polaronic states, increasing the binding energy by similar to 0.3 eV. Moreover, the photoexcitation oscillator strength changes significantly, resonating with states similar to 3.0 eV above the Fermi level. We show that this behavior is likely due to the surface migration of subsurface oxygen vacancies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据