4.7 Article

Does belowground interaction with Fagus sylvatica increase drought susceptibility of photosynthesis and stem growth in Picea abies?

期刊

FOREST ECOLOGY AND MANAGEMENT
卷 375, 期 -, 页码 268-278

出版社

ELSEVIER
DOI: 10.1016/j.foreco.2016.05.032

关键词

European beech; Norway spruce; Mixed forest; Competition; Drought; Growth

类别

资金

  1. Bavarian State Ministry of the Environment and Consumer Protection
  2. Bavarian State Ministry of Food, Agriculture and Forestry
  3. Deutsche Forschungsgemeinschaft

向作者/读者索取更多资源

Mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.) frequently over-yield, when compared to respective monospecific stands. Over-yielding is attributed to enhanced resource uptake efficiency through niche complementarity alleviating species competition, for example through enhanced root stratification in mixture. Under severe and frequent summer drought, however, water limitation may become crucial in modifying the prevailing competitive interaction in mixed beech-spruce forests. We hypothesize, therefore, that under drought (H I) inter-specific interaction with beech reduces water accessibility for spruce more than intra-specific conditions, thus (H II) exacerbating drought susceptibility of spruce in terms of reduced photosynthesis and stem growth. Reactions at the organ (leaf, fine root), tree and stand scale were analysed in a mature forest with beech-spruce group mixture. Under inter-specific conditions spruce's fine-root production and depth of water uptake (assessed via delta O-18 of xylem water) shifted to shallow, drought-prone soil horizons, in agreement with H I. Overall, lowered fine root production and ramification along with a reduction in long-distance explorative ectomycorrhizal types resulted in decreased soil exploitation in spruce when growing together with beech. Spruce's drought sensitivity was exemplified by a distinct decrease in stomatal conductance, net CO2 uptake rate and stem growth during periods of water limitation. Notwithstanding, species interaction effects were absent in leaf gas exchange and stem diameter growth, during a six-week summer drought period in 2013 as well as in the extremely dry year of 2003, hence rejecting H II. Based on results from soil moisture measurements and water uptake depth, we interpret the conflicting findings for H I and H II to result from: (i) seasonal shifts between positive (during spring drought) and negative (during summer drought) effects of beech neighbourhood on soil water availability for spruce, possibly overriding each other in their effect on annual stem diameter growth and (ii) the group -wise mixture pattern, where spruce is exposed to competition with beech only along group edges, i.e. laterally only, so that the putatively adverse beech effect on water accessibility stays limited. Our results suggest, compared to single tree mixture, group -wise mixture of beech and spruce to be a favourable silvicultural option in the face of climate change. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据