4.6 Article

De Novo Design of Molecules with Low Hole Reorganization Energy Based on a Quarter-Million Molecule DFT Screen

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 125, 期 33, 页码 7331-7343

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpca.1c04587

关键词

-

向作者/读者索取更多资源

Three novel design methods utilizing machine learning models were applied to discover new molecules with potentially higher mobilities for printed electronics applications, showing the possibility of developing an extrapolative materials design protocol.
Materials exhibiting higher mobilities than conventional organic semiconducting materials such as fullerenes and fused thiophenes are in high demand for applications in printed electronics. To discover new molecules in the heteroacene family that might show improved hole mobility, three de novo design methods were applied. Machine learning (ML) models were generated based on previously calculated hole reorganization energies of a quarter million examples of heteroacenes, where the energies were calculated by applying density functional theory (DFT) and a massive cloud computing environment. The three generative methods applied were (1) the continuous space method, where molecular structures are converted into continuous variables by applying the variational autoencoder/decoder technique; (2) the method based on reinforcement learning of SMILES strings (the REINVENT method); and (3) the junction tree variational autoencoder method that directly generates molecular graphs. Among the three methods, the second and third methods succeeded in obtaining chemical structures whose DFT-calculated hole reorganization energy was lower than the lowest energy in the training dataset. This suggests that an extrapolative materials design protocol can be developed by applying generative modeling to a quantitative structure-property relationship (QSPR) utility function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据