4.5 Article

Cationic Polymeric Nanoparticles for Improved Ocular Delivery and Antimycotic Activity of Terconazole

期刊

JOURNAL OF PHARMACEUTICAL SCIENCES
卷 111, 期 2, 页码 458-468

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.xphs.2021.09.019

关键词

Terconazole; Eudragit RLPO (R); Cationic nanoparticles; Mucoadhesive; Antimycotic activity; Candida albicans

向作者/读者索取更多资源

Terconazole is an antifungal drug with poor water solubility, limiting its ocular absorption. This study aimed to enhance its antimycotic activity in the eyes by developing terconazole-loaded polymeric nanoparticles, and the characteristics and drug release performance of the nanoparticles were evaluated.
Terconazole (TCZ) is a broad-spectrum antifungal triazole that is particularly active against Candida species, but its poor water solubility hinders its ocular absorption and restricts its application. This study aims to fabricate TCZ-loaded cationic polymeric nanoparticles to enhance the ocular delivery and antimycotic activity of terconazole. TCZ-loaded nanoparticles were developed by nanoprecipitation method employing Eudragit RLPO (R). They were characterized by entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), morphology, Fourier transform infrared spectroscopy (FT-IR), and X-ray powder diffraction (XRPD). In-vitro antimycotic activity was evaluated by measuring zone of inhibition (ZI), minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC). The developed nanoparticles were spherical with moderate to high EE% (44.03-71.14%), a nanometric PS (49.41-78.72 nm), and a positively charged ZP (>= +21.47). In-vitro release studies revealed sustained release of drug up to 24 h. FT-IR of TCZ-loaded nanoparticles revealed distinctive peaks for Eudragit RLPO (R) and Poloxamer-188, with disappearance of the TCZ characteristic peaks. XRPD revealed the amorphous state of TCZ within the polymer matrix. Mucoadhesive studies proved the mucoadhesive property of the developed TCZ nanoparticles. In-vitro antimycotic studies, assessed by ZI, MIC and MFC, revealed enhanced antimycotic activity of TCZ-loaded nanoparticles against Candida albicans, relative to plain TCZ. No irritation or abnormal changes to the rabbits' eyes for plain and medicated polymeric nanoparticles were found by the in-vivo Draize test. These findings reveal that the cationic polymeric nanoparticles can be regarded as a potential drug delivery system for enhancing the ocular antimycotic activity of TCZ. (C) 2021 American Pharmacists Association. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据