4.6 Article

Identification and characterization of quinoline alkaloids from the root bark of Dictamnus dasycarpus and their metabolites in rat plasma, urine and feces by UPLC/Qtrap-MS and UPLC/Q-TOF-MS

出版社

ELSEVIER
DOI: 10.1016/j.jpba.2021.114229

关键词

Dictamnus dasycarpus Turcz.; Quinolines; Metabolites; UPLC/Q-TOF-MS; UPLC/Qtrap-MS

资金

  1. National Key Research and Development Project [2019YFC1711403, 2018YFC1707300]
  2. National Key Technology R&D Programs New Drug Innovation of China [2018ZX09711001-008-003]

向作者/读者索取更多资源

This study comprehensively analyzed the quinoline alkaloids in the root bark of Dictamnus dasycarpus, identifying a total of 73 quinoline alkaloids, including substances newly discovered in the plant. A total of 98 BXP-related constituents were detected in rat plasma, urine and feces, revealing their metabolic pathways. This integrated strategy provides valuable insights for further research on the pharmacological effects and potential toxic substances of BXP.
Quinoline alkaloids are the main bioactive and potentially toxic constituents in the root bark of Dictamnus dasycarpus Turcz. (BXP), a widely used traditional Chinese medicine for the treatment of skin inflammation, eczema and rubella. However, the comprehensive analysis of the chemical components and metabolites of quinoline alkaloids remain unclear. In this study, an integrated strategy by combining UPLC/Q-TOF-MS and UPLC/Qtrap-MS was established to comprehensively profile the quinoline alkaloids from BXP and their metabolites in rat plasma, urine and feces. Q-TOF-MS (MSE mode), Qtrap-MS (EMS, MIM, pMRM and NL mode) were performed for acquiring more precursor ions and clearer precursor product ions. A step-by-step manner based on the diagnostic fragment ions (DFIs), in-house database, ClogP value and dipole moment (mu) was proposed to overcome the complexities due to the similar fragmentation behaviors of the quinoline alkaloids. As a result, a total of 73 quinoline alkaloids were unambiguously or tentatively identified. Among them, 4 furoquinolines, 10 dihydrofuroquinolines, 2 pyranoquinolinones, 4 dihydropyranoquinolinones and 9 quinol-2-ones were characterized in BXP for the first time. Moreover, a total of 98 BXP-related constituents (including 57 prototypes and 41 metabolites) were detected in rat plasma, urine and feces. The metabolic pathways included phase I reactions (O-demethylation, hydroxylation and 2,3-olefinic epoxidation) and phase II reactions (conjugation with glucuronide, sulfate and N-acetylcysteine). In conclusion, the integrated strategy with the proposed step-wise manner is suitable for rapid identifying and characterizing more extensive quinoline alkaloids of BXP in vitro and in vivo. Moreover, the results will be helpful for revealing the pharmacological effective substances or toxic substances of BXP and provide a solid basis for further research. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据