4.7 Article

Molecular dynamics simulation of separation of water/methanol and water/ethanol mixture using boron nitride nanotubes

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 331, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2021.115774

关键词

Methanol; Ethanol; Water; Boron nitride nanotube; Mixture; Separation

向作者/读者索取更多资源

This study investigated the efficient separation of methanol and ethanol from water using molecular dynamics simulations in different armchair boron nitride nanotubes (BNNT). The study found that (10,10) and (13,13) BNNTs could selectively separate methanol and ethanol molecules from water, influenced by BNNT diameter sizes, hydrogen bonding, and Van der Waals interactions. External forces such as hydrostatic pressure and electric field were effective in enhancing solvent molecule permeation through BNNTs.
The efficient separation of methanol and ethanol from water is an important issue due to the applications of these alcohols in many fields. This is a molecular dynamics simulation study of water/methanol and water/ethanol mixtures separations using four different types of armchair boron nitride nanotube (BNNT) including (7,7), (10,10), (12,12), and (13,13) BNNTs. The radial distribution function of solvents, density profile of solvent molecules, and number of hydrogen bonds between molecules were investigated to study the structural and dynamical properties of molecules inside the BNNTs and also, in the feed and permeate sides of the simulation box. Under a concentration gradient, (10,10) BNNT and (13,13) BNNT could selectively separate methanol and ethanol molecules from water molecules, respectively. BNNTs diameter sizes, hydrogen bonding between solvent molecules, and Van der Waals interactions between solvent molecules and BNNT were influential factors on the selective separation of methanol and ethanol molecules from water. Furthermore, the influence of applied hydrostatic pressure and electric field on the permeation of solvent molecules through BNNTs was investigated. It was revealed that these external applied forces were effective in the passage of molecules through BNNT in comparison to when applied hydrostatic pressure and electric field were absent. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据