4.7 Article

Modified hydroxyethyl cellulose as a highly efficient eco-friendly inhibitor for suppression of mild steel corrosion in a 15% HCl solution at elevated temperatures

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 338, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2021.116607

关键词

Green corrosion inhibitor; Natural polymer; Environmental effects; Mild steel; Hydroxyethyl cellulose; Polyurethane; Acidizing

资金

  1. World Bank Africa Centers of Excellence for Impact (ACE Impact) project [NUC/ES/507/1/304]

向作者/读者索取更多资源

A new method using polyurethane chemistry to enhance the inhibition activity of natural polymer-based corrosion inhibitors was introduced, showing significantly improved efficiency in suppressing corrosion even at high temperatures. Experimental results, as well as theoretical computations and simulations, provided insights into the molecular-level interactions and protective mechanisms of the modified hydroxyethylcellulose, demonstrating its potential as an effective approach for corrosion protection in aggressive acidic environments.
Natural polymer-based corrosion inhibitors have been studied for the prevention of steel corrosion in various corrosive environments over recent years, yet they did not show impressive inhibition performance especially at high temperatures. The present study introduces a facile and practical method to enhance the inhibition activity of natural polymers (hydroxyethyl cellulose (HEC) as a carbohydrate model) on the basis of polyurethane chemistry. The ability of chemically modified hydroxyethylcellulose (CHEC) in suppressing mild steel (MS) corrosion was assessed using weight loss, electrochemical impedance spectroscopy (EIS), open circuit potential (OCP), and potentiodynamic polarization (PDP) techniques, and further confirmed by field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). All electrochemical measurements revealed that the incorporation of only 1% of polyurethane prepolymer to the CHEC structure greatly enhanced its inhibition efficiency in the acidic solution, even at high temperatures. CHEC adsorbed on the MS surface and functioned as a mixed-type inhibitor, with a maximum inhibition efficiency of 93% at 80 degrees C. In addition, the morphology of MS surface in the presence of CHEC confirmed the protective role of the additive and XPS results clearly revealed CHEC adsorption on the MS surface. Furthermore, density functional theory computations and molecular dynamics simulations provided corroborating molecular-level insights on the electronic structure of CHEC and its interactions with the metal surface. These findings demonstrate that the polyurethane prepolymer method is a new and effective approach for enhancing the anticorrosion performance of natural polymer-based corrosion inhibitors in aggressive acidic media at high temperatures. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据