4.7 Article

Next-Generation Digital Biomarkers for Tuberculosis and Antibiotic Stewardship: Perspective on Novel Molecular Digital Biomarkers in Sweat, Saliva, and Exhaled Breath

期刊

出版社

JMIR PUBLICATIONS, INC
DOI: 10.2196/25907

关键词

digital biomarkers; active tuberculosis; drug resistance; wearable; smart biosensors; iSudorology; infectious diseases

向作者/读者索取更多资源

The development of the internet of health care things allows remote connection between healthcare professionals and patients wearing smart biosensors, which can serve various purposes. Digital biomarkers derived from these devices represent a patient-centered approach. The future digital biomarkers have the potential to shape the future of infectious diseases.
The internet of health care things enables a remote connection between health care professionals and patients wearing smart biosensors. Wearable smart devices are potentially affordable, sensitive, specific, user-friendly, rapid, robust, lab-independent, and deliverable to the end user for point-of-care testing. The datasets derived from these devices are known as digital biomarkers. They represent a novel patient-centered approach to collecting longitudinal, context-derived health insights. Adding automated, analytical smartphone applications will enable their use in high-, middle-, and low-income countries. So far, digital biomarkers have been focused primarily on accelerometer data and heart rate due to well-established sensors originating from the consumer market. Novel emerging smart biosensors will detect biomarkers (or compounds) independent of a lab and noninvasively in sweat, saliva, and exhaled breath. These molecular digital biomarkers are a promising novel approach to reduce the burden from 2 major infectious diseases with urgent unmet needs: tuberculosis and infections with multidrug resistant pathogens. Active tuberculosis (aTbc) is one of the deadliest diseases from an infectious agent. However, a simple and reliable test for its detection is still missing. Furthermore, inappropriate antimicrobial use leads to the development of antimicrobial resistance, which is associated with high mortality and health care costs. From this perspective, we discuss the innovative approach of a noninvasive and lab-independent collection of novel biomarkers to detect aTbc, which at the same time may additionally serve as a scalable therapeutic drug monitoring approach for antibiotics. These molecular digital biomarkers are next-generation digital biomarkers and have the potential to shape the future of infectious diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据