4.7 Article

Simple design of a Si-Sn-C ternary composite anode for Li-ion batteries

期刊

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jiec.2021.03.043

关键词

Buffering effect; Carbothermal reduction; Electrospinning; Highly commercial design; Si-Sn-C ternary anode

资金

  1. National Research Foundation of Korea (NRF) - Korean government (MSIT) [2020R1G1A1101784, 2019R1A2A3000000, NRF2018M3A7B4089670]
  2. National Research Foundation of Korea [2020R1G1A1101784] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

This study reported the preparation of simple and highly commercial Si-Sn-C ternary composite electrodes with Si and Sn nanoparticles dispersed in solid CNFs or incorporated into the core of hollow CNFs, showing good rate performance and improved cycling performance. The core/shell structure of the Si-Sn-HC nanofibers was more beneficial for rate performance and cycling performance retention.
Previous research established that Si-Sn-C ternary composite electrodes composed of carbon nanofibers (CNFs) having robust double-hole structures filled with Si and SnOx nanoparticles displayed excellent electrochemical performance due to the thermodynamic contribution of Sn. This study reports simple and highly commercial ternary composite electrodes. By electrospinning and subsequent thermal treatment, Si and Sn nanoparticles were dispersed in solid CNFs to form Si-Sn-SC nanofibers, or they were incorporated into a core of hollow CNFs to form Si-Sn-HC nanofibers. The rate performances of these two ternary electrodes displayed quite good retention because of the ternary composition, but their rate performances differed at high current densities (5000 and 10,000 mA g(-1)); the core/shell structure of the Si-Sn-HC nanofibers was more beneficial for rate performance retention than the Si-Sn-SC nanofibers having intimate electrical contact of Sn and Si with the carbon matrix. Improved cycling performances also resulted from the structure of the Si-Sn-HC nanofibers. The core/shell structured Si-Sn-C ternary composite anode thus has an advantageous structure for high-power Li-ion batteries having long-term stability. (c) 2021 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据