4.7 Article

Ensemble smoother with multiple data assimilation to simultaneously estimate the source location and the release history of a contaminant spill in an aquifer

期刊

JOURNAL OF HYDROLOGY
卷 598, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhydrol.2021.126215

关键词

Inverse modeling; Ensemble Kalman filter method; Groundwater contaminant source; Covariance localization; Stochastic analysis

资金

  1. Fondazione Cariparma
  2. Spanish Ministry of Science and Innovation [PID2019-109131RB-I00]
  3. University of Parma

向作者/读者索取更多资源

The article presents a new approach using ES-MDA method to determine the source location and time history of a pollutant in groundwater contamination events. Through two case studies, the method's application and impact in practice are demonstrated.
The source location and the time history of a pollutant released in an aquifer are very relevant information for the design of effective remediation strategies. Usually, their identification requires solving an inverse problem when the only available information about the groundwater contamination event is a sparse set of concentration data collected in the aquifer at a few points downstream from the source. Here, a novel approach is proposed to solve the inverse problem: the use of the Ensemble Smoother with Multiple Data Assimilation (ES-MDA) in the context of source contamination identification. This method is used for the simultaneous determination of the time history and the source location of a pollutant release based on observed concentration data and a calibrated numerical model of groundwater flow and mass transport in the aquifer. The ES-MDA is demonstrated in two case studies. The first one is based on an analytical solution of the flow and transport equations, aimed at the estimation of the source location and the release history of a nonreactive pollutant spreading in a two-dimensional homogeneous aquifer from a point source. For this case, different alternatives are considered for the spatial distribution of the observation points, the concentration sampling frequency, the ensemble size and the use of covariance localization and covariance inflation techniques in the formulation of the smoother. The purpose of this case is to test the new approach, analyze its performance and also to identify the conditions that render the problem ill-posed and, therefore, without solution; also, in this case, a new spatiotemporal iterative localization is presented. In the second case study, we use real data collected in a laboratory sandbox that reproduces a vertical cross-section of an unconfined aquifer with two-dimensional quasi-parallel flow between constant-head boundaries. The results show that the location, time and number of observations, the ensemble size and the application of covariance localization and covariance inflation techniques have an impact on the final solution. A well-designed monitoring network and the application of covariance corrections improve the performance of the ES-MDA and help avoiding ill-posedness and equifinality. The application to laboratory data validates the potential of ES-MDA to simultaneously estimate the time history and the source location of a pollutant released in groundwater in real cases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据