4.7 Article

1D/2D constructed Bi2S3/Bi2O2CO3 direct Z-Scheme heterojunction: A versatile photocatalytic material for boosted photodegradation, photoreduction and photoelectrochemical detection of water-based contaminants

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 418, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.126263

关键词

Bismuth subcarbonate; Tetracycline hydrochloride; Photocatalysis; Cr(VI) reduction; Visible light degradation

资金

  1. National Research Foundation of Korea [NRF-2020R1H1A2102696]
  2. Brain Pool Program through the National Research Foundation of Korea (NRF) - Ministry of Science and ICT [2018H1D3A1A02074832]
  3. National Research Foundation of Korea [2018H1D3A1A02074832] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

By controlling the amount of thiourea under hydrothermal conditions, a high-efficiency photocatalytic composite of Bi2S3 over Bi2O2CO3 was synthesized, leading to enhanced light absorption and improved charge carrier separation.
In this work, two-dimensional Bi2O2CO3 disk is synthesized, followed by the growth of Bi2S3 over Bi2O2CO3 via topotactic transformation by controlling the amount of thiourea under hydrothermal conditions. The synthesized composite catalyst is investigated for photocatalytic oxidation and reduction of tetracycline hydrochloride and hexavalent chromium under visible light irradiation. High interfacial contact between the Bi2O2CO3 disk0 and Bi2S3 fiber is confirmed via high-resolution microscopic imaging. Enhanced light absorption and increased charge carrier separation is observed after the formation of the Bi2S3/Bi2O2CO3 composite. The Bi2S3/Bi2O2CO3 composite grown using 1 mmol of thiourea shows approximately 98% degradation of tetracycline hydrochloride after 120 min and 99% Cr(VI) reduction after 90 min of photochemical reaction under visible light irradiation. The charge separation is due to the formed internal electric field at the interface, which upon light irradiation follows a z-scheme charge transfer hindering the recombination at the Bi2S3 and Bi2O2CO3 interface, thereby contributing efficiently to the photochemical process. In addition, the mechanism of the photochemical reaction for the degradation of pollutants is supported using quencher and probe experiments. Furthermore, photoelectrochemical detection of antibiotic in aqueous solution is conducted to understand the sensing feasibility of the synthesized system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据