4.7 Article

Human health risk assessment in aluminium smelting site: Soil fluoride bioaccessibility and relevant mechanism in simulated gastrointestinal tract

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 416, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.125899

关键词

Fluoride; Soil; In vitro; Bioaccessibility; Health risk

资金

  1. National Natural Science Foundation of China [42007373, 41877501]
  2. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

This study investigated the bioaccessibility of fluoride in the human gastrointestinal tract, finding that factors such as dissolution and complex formation significantly influence fluoride bioaccessibility. The results can help reduce the hazard of fluoride exposure and highlight the potential risks for children exposed to soil fluoride.
Incidental oral ingestion is considered to be an important exposure route for humans to soil contaminants, such as fluoride (F). For 25 soil samples containing 4000 mg F/kg from aluminium smelting site in southwestern China, this study investigated F bioaccessibility in the human gastrointestinal tract in vitro. Fluoride bioaccessibility (2.4-48.8%) in the gastric phase was primarily caused by the dissolution of F-Ca and F-Al compounds (assigned to residual phase), identified by X-ray photoelectron spectroscopy and sequential extraction. Following modification to the small intestinal phase, the variation in F bioaccessibility (2.5-38.8%) should be the result of concurrent processes, including the formation of F complexes and competitive adsorption, and inversely the precipitation of fluorite and surface adsorption of formed F-Al complexes. The colon incubation with human gut microbiota yielded a 1.3-fold increase in F bioaccessibility (3.9-45.7%), probably due to the dissolution of F bound to Fe (hydr)oxides. Bioaccessibility adjustment can reduce hazard quotient of fluoride, and noncarcinogenic risk for children should be noted that soil F intake contributed 21.7% on average, up to 76.6% of oral reference dose. This will result in better understanding of human health risk assessment associated with F exposures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据