4.7 Article

Can heavy metal pollution induce bacterial resistance to heavy metals and antibiotics in soils from an ancient land-mine?

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 411, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.124962

关键词

Antibiotics; Heavy metals; Co-tolerance; Antibiotic resistance; Mining soil

资金

  1. China Scholarship Council (CSC) [201906910010]
  2. Knut and Alice Wallenberg Foundation [KAW 2017.0171]
  3. Danmarks Frie Forskningsfond (DFF) [903600004B]

向作者/读者索取更多资源

Recent studies have shown that exposure to heavy metals can lead to antibiotic resistance. In a mining soil survey, it was found that microbial activities were affected by metal concentrations, and bacterial tolerance to metals was universally elevated.
Microbial resistance to antibiotics is a growing challenge to human health. Recent evidence has indicated that antibiotic resistance can be co-selected for by exposure to heavy metals in agricultural soils. It remains unknown if this is a concern in other environments contaminated by metals. We here investigated soil microbial activities, composition and tolerance to heavy metals and antibiotics in a mining soil survey. We found that microbial respiration, growth, and biomass were affected by available metal concentrations. Most of the variation in microbial PLFA composition was explained by differences in heavy metal and pH. Additionally, pollution-induced bacterial community tolerance to toxicants including Cu, Pb, Zn, tetracycline and vancomycin was determined. Although only bacterial tolerance to Pb increased with higher levels of metals, the links between bacterial metal tolerance and soil metal concentrations were clear when considered together with previously published reports, suggesting that bacterial metal tolerance were universally elevated in the surveyed soils. The induced levels of heavy metal tolerance coincided with elevated levels of tolerance to vancomycin, but not to tetracycline. Our study showed that heavy metals can co-select for resistance to clinically important antibiotics also in ecosystems without manure input or antibiotic pollution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据