4.7 Review

Bismuth-based photocatalyst for photocatalytic oxidation of flue gas mercury removal: A review

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 418, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.126280

关键词

Bismuth-based photocatalyst; Flue gas; Heavy metal mercury; Photocatalytic; Oxidation

资金

  1. National Natural Science Foundation of China [52076126, 51576158]

向作者/读者索取更多资源

Photocatalytic oxidation is a promising technology for addressing industrial flue gas mercury (Hg) pollution. Bi-based photocatalysts have attracted attention due to their unique structures and high performance, offering potential solutions to the issue.
Photocatalytic oxidation method is a promising technology for solving flue gas mercury (Hg) pollution from industrial plants. Semiconductor photocatalysts have been widely applied in energy conversion and environmental remediation. However, key issues such as low light absorption capacity, wide energy band gap, and poor physicochemical stability severely limit the application of photocatalysts in practical industrial plants. In recent years, bismuth-based (Bi-based) photocatalysts, including bismuth oxide halide BiOX (X = Cl, Br or I), bismuth salt oxymetal BiVO4, and BiOIO3 etc., have increasingly aroused scientists' attention due to their peculiar crystalline geometric structures, tunable electronic structure and high photocatalytic performance. In present review, we firstly review the photocatalytic reaction mechanism and main photocatalytic oxidation mechanism of mercury. Secondly, the synthetic methods of Bi-based photocatalysts are summarized. Then, according to the mechanism of mercury removal, the experimental modifying approaches including heterojunction making, external atoms doping, defect creating, and crystal face regulating to promote the photocatalytic oxidation of mercury removal are summarized, as well as the determination of the band gap and electronic density of states (DOS) of Bi-based photocatalysts to elucidate the photocatalytic oxidation mechanism via density functional theory (DFT) calculation. Furthermore, constructing electronic transmission channels is an efficient way to improve the photocatalytic activity. Finally, challenges and perspectives of Bi-based photocatalyst for photocatalytic oxidation of mercury removal are presented. In addition, the excellent performance photocatalysts and efficient pollution removal equipment for mercury removal in industrial plants are still required in-depth study.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据