4.7 Article

Crude oil biodegradation potential of biosurfactant-producing Pseudomonas aeruginosa and Meyerozyma sp.

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 418, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.126276

关键词

Biodegradation; Bioremediation; Biosurfactants; Microorganisms; Crude oil

资金

  1. Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan

向作者/读者索取更多资源

This study investigated the crude oil degrading capabilities of biosurfactant-producing strains of Pseudomonas aeruginosa and Meyerozyma sp. The biosurfactants produced by these strains showed high emulsification activities in crude oil and stability under various conditions. Gravimetric and GC-MS analyses demonstrated efficient petroleum hydrocarbons degradation by both strains, indicating their potential for bioremediation of hydrocarbons-contaminated sites.
This study investigates the potential of crude oil degrading capabilities of biosurfactant-producing strains of Pseudomonas aeruginosa MF069166 and Meyerozyma sp. MF138126. P. aeruginosa produced mono-/di-rhamnolipids congeners whereas, Meyerozyma sp. produced acidic and lactonic forms of sophorolipids with crude oil. The values of critical micelle concentrations of rhamnolipids and sophorolipids were 40 mg/L and 50 mg/L with reductions in surface tension of water to 29 mN/m and 33 mN/m. Dynamic light scattering revealed that the average diameter of micellar aggregates of rhamnolipids ranged between 300 and 350 nm and the average size of sophorolipids micelles was 309 nm and 380 nm. Biosurfactants from P. aeruginosa and Meyerozyma sp. exhibited emulsification activities of 87% and 84% in crude oil. Cell surface hydrophobicity of both strains was higher in the presence of hydrophobic contaminants. The biosurfactants showed stability under varying pH, NaCl concentrations and temperatures. Gravimetric and GC-MS analyses demonstrated that P. aeruginosa degraded 91% of the petroleum hydrocarbons while Meyerozyma sp. showed 87% biodegradation efficiency. P. aeruginosa and Meyerozyma sp. have also been found to degrade halogen-containing compounds and showed excellent crude oil degradation efficiency. It is concluded that both strains have high potential of applications in the bioremediation of hydrocarbons-contaminated sites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据