4.7 Article

Polypyrrole functionalized Cobalt oxide Graphene (COPYGO) nanocomposite for the efficient removal of dyes and heavy metal pollutants from aqueous effluents

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 416, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.125929

关键词

Graphene nanocomposite; Industrial wastewater treatment; Adsorption; Mesoporous material; Cobalt oxide; Polypyrrole conducting polymer

向作者/读者索取更多资源

A heterogenous porous COPYGO composite was synthesized using hydrothermal method, showing efficient removal of pollutants in industrial wastewater with high adsorption capacity and thermal stability.
A cobalt oxide graphene nanocomposite functionalized with polypyrrole (COPYGO) having a heterogenous porous structure was synthesized using hydrothermal method. Microscopic imaging of the COPYGO surface revealed its highly porous and ordered features. The adsorption performance of the COPYGO composite was systemically investigated for Methylene Blue (MB), Congo red (CR) dyes and toxic lead (Pb(II)) and Cadmium (Cd(II)) metals. These were selected as they are the common pollutants in industrial wastewater. The COPYGO was found to be thermally stable up to 195 oC with a specific surface area of 133 m2 g-1. Experimental data indicates that the COPYGO follows Langmuir and Temkin adsorption isotherm. The COPYGO was efficient in removing MB (92.8%), CR (92.2%), Pb(II) (93.08%) and Cd(II) (95.28%) pollutants at pH 7.2, 5.0, 5.5 and 6.1 respectively from the simulated effluents. The maximum adsorption capacity (Qmax) observed for MB 663.018 mg g-1, CR 659.056 mg g-1, Pb(II) 780.363 mg g-1 and Cd(II) 794.188 mg g-1 pollutants. The thermodynamic analysis of the COPYGO indicates that the adsorption is endothermic and spontaneous in nature. COPYGO showed very high efficient removal rate for the pollutants in simulated effluents which guaranteed its benefits and efficacy in industrial wastewater treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据