4.7 Article

Complete solar-driven dual-photoelectrode fuel cell for water purification and power generation in the presence of peroxymonosulfate

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 416, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.125682

关键词

Photocatalytic fuel cell; Solar irradiation; Peroxymonosulfate; Power recovery; Recalcitrant wastewater treatment

资金

  1. National Natural Science Foundation of China [51822806, 52070055, 51671117]
  2. State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology) [2020DX07]

向作者/读者索取更多资源

This study presents a complete solar-driven dual-photoelectrode fuel cell utilizing WO3 photoanode and Cu2O photocathode, with PMS as the cathodic electron acceptor. The addition of PMS enhances the thermodynamic properties of the photocathode, significantly increasing the removal efficiency and providing an effective way for water purification and power generation, making wastewater treatment more economical and sustainable.
This study reports the development of complete solar-driven dual-photoelectrode fuel cell (PFC) based on WO3 photoanode and Cu2O photocathode with peroxymonosulfate (PMS) serving as cathodic electron acceptor. As indicated by photoelectrochemical measurements, the PMS was able to improve thermodynamic properties of photocathode, achieving an increased open circuit potential from 0.42 V to 0.65 V vs standard hydrogen electrode (SHE). Under simulated sunlight irradiation (-100 mW cm-2), the maximum power density of 0.12 mW cm-2 could be obtained at current density of 0.34 mA cm-2, which was 8.57 times of that produced by PFC without PMS (0.014 mW cm-2). Correspondingly, adding PMS (1.0 mM) increased overall removal efficiency of 4-chlorophenol (4-CP) from 39.8% to 96.8%, accounting for the first-order kinetic constant (k=0.056 min-1) being 6.67 times of that in the absence of PMS (k=0.0084 min-1). Radical quenching and electron spin-resonance (ESR) results suggested the contribution of free radicals (center dot OH and SO4 center dot-) and non-radical pathway associated with direct activation of PMS by Cu2O photocathode. Fourier transformed infrared (FTIR) analysis confirmed the strong non-radical interaction between Cu2O photocathode and PMS, resulting in 4-CP removal via activation of PMS by surface complex on Cu2O. The proof-in-concept complete solar-driven dual-photoelectrode fuel cell may offer an effective manner to realize water purification and power generation, making wastewater treatment more economical and more sustainable.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据