4.7 Article

Effects of different dissolved organic matter on microbial communities and arsenic mobilization in aquifers

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 411, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.125146

关键词

Arsenic; Sediment; Microbial community response; Labile and recalcitrant; Dissolved organic matter

资金

  1. National Natural Science Foundation of China [41702365, 91851115]
  2. Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) [CUG180623]

向作者/读者索取更多资源

This study found that adding different types of dissolved organic matter can lead to changes in microbial community structure, thereby affecting the biotransformation of arsenic and iron, potentially enhancing arsenic mobilization and iron reduction.
Dissolved organic matter (DOM) play key roles in the biotransformation of arsenic in groundwater systems. However, the effects of different types of DOM on arsenic biogeochemistry remain poorly understood. In this study, four typical DOM compounds (acetate, lactate, AQS and humic acid) were amended to high As aquifer sediments to investigate their effects on arsenic/iron biotransformation and microbial community response. Results demonstrated that different DOM drove different microbial community shifts and then enhanced microbially-mediated arsenic release and iron reduction. With labile DOM (acetate and lactate) amendment, the abundance of putative dissimilatory iron and sulfate reducers Desulfomicrobium and Clostridium sensu stricto increased within the first week, and subsequently the anaerobic fermentative bacterial genus Acetobacterium and arsenate/sulfate-reducing bacterial genus Fusibacter became predominant. In contrast, recalcitrant DOM (AQS and humic acid) mainly stimulated the abundances of sulfur compounds respiratory genus Desulfomicrobium and fermentative bacterial genus Alkalibacter in the whole incubation. Accompanied with the microbial community structure and function shifts, dissolved organic carbon concentration and oxidation-reduction potential changed and the arsenic/iron reduction increased, which resulted in the enhanced arsenic mobilization. Collectively, the present study linked DOM type to microbial community structure and explored the potential roles of different DOM on arsenic biotransformation in aquifers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据