4.7 Article

Global energy budgets in turbulent Couette and Poiseuille flows

期刊

JOURNAL OF FLUID MECHANICS
卷 924, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2021.598

关键词

turbulence theory

资金

  1. Priority Programme SPP 1881 Turbulent Superstructures of the Deutsche Forschungsgemeinschaft [GA 2533/1-1]

向作者/读者索取更多资源

The turbulent plane Poiseuille and Couette flows have the same geometry but are driven by pressure gradient and shear, respectively. A new concept of flow efficiency and effectiveness is introduced to compare different flows, showing that Couette flows are less efficient but more effective due to their more effective laminar component. They dissipate a smaller percentage of total power via turbulent dissipation, attributed to stronger large-scale structures contributing less significantly to dissipation.
Turbulent plane Poiseuille and Couette flows share the same geometry, but produce their flow rate owing to different external drivers: pressure gradient and shear, respectively. By looking at integral energy fluxes, we pose and answer the question as to which flow performs better at creating flow rate. We define a flow efficiency, which quantifies the fraction of power used to produce flow rate instead of being wasted as a turbulent overhead; effectiveness, instead, describes the amount of flow rate produced by a given power. The work by Gatti et al. (J. Fluid Mech., vol. 857, 2018, pp. 345-373), where the constant power input concept was developed to compare turbulent Poiseuille flows with drag reduction, is here extended to compare different flows. By decomposing the mean velocity field into a laminar contribution and a deviation, analytical expressions are derived which are the energy-flux equivalents of the FIK identity. These concepts are applied to literature data supplemented by a new set of direct numerical simulations, to find that Couette flows are less efficient but more effective than Poiseuille flows. The reason is traced to the more effective laminar component of Couette flows, which compensates for their higher turbulent activity. It is also observed that, when the fluctuating fields of the two flows are fed with the same total power fraction, Couette flows dissipate a smaller percentage of it via turbulent dissipation. A decomposition of the fluctuating field into large and small scales explains this feature: Couette flows develop stronger large-scale structures, which alter the mean flow while contributing less significantly to dissipation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据