4.7 Article

Life cycle assessment of prospective sewage sludge treatment paths in Germany

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 290, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2021.112557

关键词

Phosphorous recovery; Sewage sludge; Hydrothermal carbonization; Incineration; Pyrolysis; Life cycle assessment

资金

  1. European Commission
  2. European Regional Development Fund (ERDF) under the slogan Investing in our future

向作者/读者索取更多资源

A study analyzed four treatment paths for sewage sludge in Germany, showing that AD + spreading had the least environmental impacts, but with high local immission potential. Thermal post-treatment is necessary, with AD + I and AD + HTC + I having overall least impacts, while AD + P + I had similar or higher impacts in all categories. Mitigation of fossil energy use, N2O emissions, and careful selection of phosphorous recovery technology are crucial for all post-treatment paths.
Due to the amendment of the sewage sludge ordinance, both a thermal post-treatment and a phosphorous recovery from sewage sludge will become mandatory for large-scale wastewater treatment plants in Germany. This study analyzed four prospective treatment paths for sewage sludge by means of life cycle assessment. In the realm of a gate-to-cradle approach, environmental impacts were quantified for all compartments of the ReCiPe Midpoint (H) 2016 method. The spreading of digested sludge on agricultural soils was considered as the base case (system: AD + spreading). It was compared to the centralized incineration of sludge (system: AD + I), a decentralized hydrothermal carbonization followed by centralized incineration (system: AD + HTC + I) and a decentralized pyrolysis of sludge followed by centralized incineration (system: AD + P + I). For all cases, phosphorous recovery from the ash was included. A comparative evaluation showed that AD + spreading resulted in least environmental impacts in most categories but was subject to a high local immission potential due to sewage sludge spreading. It was found to be only justifiable, if toxicity and eutrophication were not compromised. Alternatively, a thermal posttreatment step is required. Hereby, AD + I and AD + HTC + I showed the overall least environmental impacts, while AD + P + I was characterized by similar or higher environmental impacts throughout all impact categories. Alongside the comparative analysis, a hotspot analysis was carried out and mitigation potentials were identified. For all thermochemical post-treatment paths, it was derived that (i) the share of fossil external energy must be kept to a minimum, (ii) primary or secondary measures to control N2O emissions during the incineration and pyrolysis should be implemented and (iii) the technological approach to recover phosphorous must be carefully selected.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据