4.7 Article

Revealing horizontal and vertical variation of soil organic carbon, soil total nitrogen and C:N ratio in subtropical forests of southeastern China

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 289, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2021.112483

关键词

Spatial variation; GIS; Environmental variables; Carbon and nitrogen density; Forest soils

资金

  1. Natural Science Foundation of Zhejiang Province [LY20C160004]
  2. National Natural Science Foundation of China [41201323]

向作者/读者索取更多资源

Soil organic carbon (SOC) and total nitrogen (STN) contents decrease significantly with increasing soil depth, and are closely related to topography. The dominant tree species, elevation, and vegetation index are identified as key factors affecting SOC and STN contents in subtropical forests.
Soil organic carbon (SOC) and total nitrogen (STN) are crucial soil quality indicators in a forest ecosystem. Their cycling processes and interactions have a key impact on the plants productivity, potential carbon sequestration and stability of the terrestrial ecosystem. In this study, soil profile samples (0'100 cm) were collected from 906 plots of typical subtropical forest in Zhejiang Province, southeastern China. Moran's I, geostatistics and geographic information system (GIS) techniques were used to study the vertical and horizontal heterogeneity of SOC, STN and C:N ratio. The results indicated that the contents of SOC and STN clearly decreased with the soil depth increasing (from 0 to 10 cm layer to 60-100 cm layer). The spatial distributions of SOC and STN were consistent with the topography, showing a decreasing trend from southwest to northeast of Zhejiang Province. The results of ANOVA and correlation analyses indicated that the dominant tree species, elevation and Normalized Difference Vegetation Index (NDVI) were the key factors affecting SOC and STN contents. For the total 0-100 cm soil layer, the mean densities of SOC and STN were 108.53 Mg ha(-1) and 0.08 Mg ha(-1), respectively. The total stocks of SOC and STN were 877.19 Tg and 84.42 Tg. Approximately 65% SOC and 45% STN were belonged to the upper 30 cm soil layer, which was strongly related to the actual soil thickness. The results could provide critical information for forestry and environmental management related to C and N accumulations in subtropical forests of China.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据