4.7 Article

Electrochemical degradation of per- and poly-fluoroalkyl substances using boron-doped diamond electrodes

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 290, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2021.112573

关键词

PFAS; Electrochemical degradation; Design of experiment; Water; Wastewater; Oxidizable substances

资金

  1. EU Interreg Nord programme [NYPS 20202462]
  2. Swedish Geotechnical Institute (SGI) 's Tuffo Research and Technology Development Program

向作者/读者索取更多资源

Electrochemical degradation using boron-doped diamond (BDD) electrodes has been proven to be an effective method for treating water contaminated with per- and poly-fluoroalkyl substances (PFAS). Factors such as current density and treatment time were found to significantly impact the degradation efficiency of PFAS, particularly perfluorooctanoic acid (PFOA). High concentrations of organic carbon and chloride in wastewater samples were identified as important factors affecting the efficiency of PFAS electrochemical degradation. Increasing treatment time is recommended to effectively degrade PFAS in both water and wastewater samples.
Electrochemical degradation using boron-doped diamond (BDD) electrodes has been proven to be a promising technique for the treatment of water contaminated with per- and poly-fluoroalkyl substances (PFAS). Various studies have demonstrated that the extent of PFAS degradation is influenced by the composition of samples and electrochemical conditions. This study evaluated the significance of several factors, such as the current density, initial concentration of PFAS, concentration of electrolyte, treatment time, and their interactions on the degradation of PFAS. A 24 factorial design was applied to determine the effects of the investigated factors on the degradation of perfluorooctanoic acid (PFOA) and generation of fluoride in spiked water. The best-performing conditions were then applied to the degradation of PFAS in wastewater samples. The results revealed that current density and time were the most important factors for PFOA degradation. In contrast, a high initial concentration of electrolyte had no significant impact on the degradation of PFOA, whereas it decreased the generation of F- . The experimental design model indicated that the treatment of spiked water under a current density higher than 14 mA cm-2 for 3-4 h could degrade PFOA with an efficiency of up to 100% and generate an F- fraction of approximately 40-50%. The observed high PFOA degradation and a low concentration of PFAS degradation products indicated that the mineralization of PFOA was effective. Under the obtained best conditions, the degradation of PFOA in wastewater samples was 44-70%. The degradation efficiency for other PFAS in these samples was 65-80% for perfluorooctane sulfonic acid (PFOS) and 42-52% for 6-2 fluorotelomer sulfonate (6-2 FTSA). The presence of high total organic carbon (TOC) and chloride contents was found to be an important factor affecting the efficiency of PFAS electrochemical degradation in wastewater samples. The current study indicates that the tested method can effectively degrade PFAS in both water and wastewater and suggests that increasing the treatment time is needed to account for the presence of other oxidizable matrices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据