4.7 Article

Combined application of rhamnolipid and agricultural wastes enhances PAHs degradation via increasing their bioavailability and changing microbial community in contaminated soil

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 294, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2021.112998

关键词

PAHs; Surfactant; Agricultural wastes; Bioavailability; Biodegradation; Microbial community

资金

  1. National Natural Science Foundation of China [42077325, 41571456]
  2. Natural Science Basic Research Plan in Shaanxi Province of China [2019JZ-25]

向作者/读者索取更多资源

The combined application of biosurfactants and agricultural wastes showed significantly enhanced degradation of PAHs in contaminated soil, increased bioavailability of PAHs, and altered microbial communities in soil.
Either biosurfactants or agricultural wastes were frequently used to enhance degradation of PAHs in soil, but there is still not clear whether combined application of biosurfactants and agricultural wastes is more efficient. Rhamnolipid and/or agricultural wastes (mushroom substrate or maize straw) were mixed with PAHscontaminated soil to explore their performances in the removal of PAHs. The present study showed that rhamnolipid combined with mushroom substrate (MR, 30.36%) or maize straw (YR, 30.76%) significantly enhanced the degradation of soil PAHs compared with single application of mushroom substrate (M, 25.53%) or maize straw (Y, 25.77%) or no addition (19.38%). The addition of agricultural wastes significantly (p < 0.001) enhanced concentration of dissolved organic carbon (DOC) in soil. The combined application obviously improved the bioavailability of PAHs in soils and exhibited synergistic effects on concentration of organic acidsoluble HMW PAHs and the degradation rate of total HMW PAHs. Meanwhile, the combined application significantly (p < 0.01) enhanced the abundance of dominant bacterial and fungal genera being connected with PAHs degradation. The removal rate of PAHs was positively correlated with the dominant genera of bacteria (r = 0.539-0.886, p < 0.05) and fungi (r = 0.526-0.867, p < 0.05) related to PAHs degradation. Overall, the combined application exhibited a better performance in the removal of PAHs in contaminated soil via increasing their bioavailability and changing microbial communities in soil.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据