4.7 Article

Foam fractionation for effective removal of Pseudomonas aeruginosa from water body: Strengthening foam drainage by artificially inducing foam evolution

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 291, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2021.112628

关键词

P. aeruginosa removal; Foam drainage; Bubble size; Bubble coalescence; Process intensification

资金

  1. National Natural Science Foundation of China [21908041]
  2. Science and Technology Project of Hebei Education Department, China [QN2018079]
  3. Natural Science Foundation of Hebei Province, China [B2020202070]
  4. Graduate Student Innovation Foundation of Hebei Province, China [CXZZBS2020039]

向作者/读者索取更多资源

Foam fractionation was used to remove P. aeruginosa from aqueous solution, with a novel strategy developed to strengthen foam drainage by inducing foam evolution. By increasing the size difference among adjacent bubbles, gas diffusion and bubble coarsening were significantly promoted, contributing to the removal of microbial contamination effectively.
Lack of microbial contamination is of great significance to drinking water safety and water reclamation. In this work, foam fractionation was employed to remove Pseudomonas aeruginosa (P. aeruginosa) from aqueous solution and dodecyl dimethyl betaine (BS12) was used as the collector. Since the attachment of strain cells on the bubble surface would impede the reflux of interstitial liquid in the plateau borders (PBs), a novel strategy in strengthening foam drainage was developed through artificially inducing foam evolution. Two gas distributors with different pore diameters had been mounted at the bottom of the column for regulating the radial distribution of bubble size in the foam phase. Experimental results indicated that gas diffuse and bubble coarsening could be significantly promoted by increasing the size difference among the adjacent bubbles. Bubble coalescence contributed to broadening the width of plateau borders, thereby avoiding the borders blockage by strain cells. During bubble coalescence, surfactant molecules would be partially shifted from the surface of small bubble towards that of large bubble due to the molecule density difference. The increase in surface excess of surfactant molecules on gas-liquid interface was conducive to improving foam stability. Under the suitable conditions of air flow rates of gas distributor with 0.125 mm of pore diameter 75 mL/min and gas distributor with 0.425 mm of pore diameter 125 mL/min, BS12 concentration 0.1 g/L, and P. aeruginosa concentration 2.0 x 10(4) CFU/mL, the removal percentage and enrichment ratio of P. aeruginosa were 99.6% and 10.6, respectively. This work is expected to provide some new light for strengthening foam drainage in the presence of solid particles and to facilitate the industrialization of foam fractionation in water treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据